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Industrial revolutions

First industrial revolution (~𝟏𝟕𝟔𝟎): steam engine (James Watt)

Second industrial revolution (~𝟏𝟗𝟎𝟎): electricity (Thomas Edison) 

Third industrial revolution (~𝟏𝟗𝟒𝟎): information technology and computers (Steve Jobs & Bill Gates)  

Fourth industrial revolution (~𝟏𝟗𝟖𝟎): digital revolution, Internet and fusion of different technologies
(Google, Facebook, Uber, Airbnb, Amazon) 
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Investment in quantum technologies
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Governments:
➢ The US quantum initiative program ($1b)
➢ The European quantum flagship program (€1b)
➢ Quantum hubs in the UK (£560m) 
➢ The National Quantum Strategy plan in Australia ($1b)

Companies:
➢ Giant Companies: Google, IBM, Microsoft, Amazon, Huawei, Tencent, Alibaba
➢ Startups: IonQ, PsiQ, Xanada, Zapata, …



Moor’s law: Processing power

The CPU of iphone is ~3000 times faster 
than Apollo spacecraft’s

1970 2020

50 years
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Moor’s law: Memory

Launched 1999
Weight~ 150 g

Memory= 16 MB

Launched 2020
Weight~ 160 g

Memory= 256 GB

16000 times more memory 
with the same weight !!

20 years
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Moor’s law
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The number of transistors were doubled every two years for a period of ~50 years

Moor’s law is now violated as transistors have reached the atomic scale 



Quantum Physics
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Quantum Superposition
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0 or 1
10  +

0 & 1

𝑎0ȁ ۧ0 + 𝑎1ȁ ۧ1 2 numbers are encoded by 1 particle

𝑎00ȁ ۧ00 + 𝑎01ȁ0 ۧ1 + 𝑎10ȁ ۧ10 + 𝑎11ȁ1 ۧ1

23 numbers are encoded by 3 particle𝑎000ȁ0 ۧ00 + 𝑎001ȁ00 ۧ1 + 𝑎010ȁ0 ۧ10 + 𝑎011ȁ01 ۧ1 +
𝑎100ȁ1 ۧ00 + 𝑎101ȁ10 ۧ1 + 𝑎110ȁ1 ۧ10 + 𝑎111ȁ11 ۧ1

22 numbers are encoded by 2 particle

By 𝑁 particles one can encode 2𝑁 numbers
2300~ is equal to the number of atoms 

In the whole universe

Can quantum mechanics help for big data analysis?

ȁ ۧ0 =
1
0

, ȁ ۧ1 =
0
1



Entanglement
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The first consequence of super position principle is quantum entanglement

ۧȁ𝜙𝐴 = 𝑎0ȁ ۧ0 + 𝑎1ȁ ۧ1

ۧȁ𝜙𝐵 = 𝑏0ȁ ۧ0 + 𝑏1ȁ ۧ1

ȁ Ψ𝐴𝐵ۧ = ȁ0 ۧ0 + ȁ ۧ11 / 2

ۧȁ𝜙𝐴 ۧȁ𝜙𝐵 = 𝑎0𝑏0ȁ ۧ00 + 𝑎0𝑏1ȁ ۧ01 + 𝑎1𝑏0ȁ ۧ10 + 𝑎1𝑏1ห ۧ11 = ȁ Ψ𝐴𝐵ۧ

𝑎0𝑏0 =
1

2
𝑎0𝑏1 = 0
𝑎1𝑏0 = 0

𝑎1𝑏1 = 1/ 2

It is impossible to be satisfied

ȁ Ψ𝐴𝐵ۧ ۧȁ𝜙𝐴 ۧȁ𝜙𝐵Can any bipartite system AB  be described as:

While we can precisely describe the whole system, we cannot describe the subsystems by a single quantum state



Quantum evolution (closed systems)

10

ȁ ۧΨ = 𝑈 ȁ ۧ𝜙 𝑈𝑈† = 𝑈†𝑈=I

Every quantum state can evolve to another state through unitary operation

For instance (mathematical description):

ȁ ۧΨ(𝜃) = 𝑒−𝑖𝜃𝜎𝑥 ȁ ۧ0 = cos 𝜃 ȁ ۧ0 − 𝑖 sin(𝜃)ȁ ۧ1 𝜎𝑥 =
0 1
1 0

In the lab, this unitary rotation is implemented by a magnetic field along the 𝑥 direction



Quantum measurement
Unlike classical physics, quantum measurement changes the state of the system

ȁψۧ = 𝑎0ȁ ۧ0 + 𝑎1ȁ ۧ1 𝜎𝑧 measurement

𝑝0 = 𝑎0
2: ȁ ۧ0

𝑝1 = 𝑎1
2: ȁ ۧ1

Basis of the measurement matter:

+ =
0 + ȁ1ۧ

2

− =
0 − ȁ1ۧ

2

0 =
+ + ȁ−ۧ

2

1 =
+ − ȁ−ۧ

2

ȁψۧ = 𝑎0ȁ ۧ0 + 𝑎1ȁ ۧ1 =
𝑎0 + 𝑎1

2
+ +

𝑎0 − 𝑎1

2
−

𝜎𝑥 measurement

𝑝+ =
ȁ𝑎0 + 𝑎1ȁ

2

2
: ȁ ۧ+

𝑝− =
ȁ𝑎0 − 𝑎1ȁ

2

2
: ȁ ۧ− 11



Quantum technologies timeline
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Interdisciplinary subject
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Physics
& 

Mathematic

Engineering

Computer Science

Quantum
Tech.



What is quantum technology?

Quantum communications: 
❑ Quantum key distributions
❑ Quantum Internet

Quantum computation/simulations:
❑ Quantum computers/simulators
❑ Quantum algorithms
❑ Quantum machine learning

Quantum sensing:
❑ Quantum probes
❑ Quantum enhanced sensitivity 
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Application 1: quantum communication
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Communication

Message:     001101101001

Ideal channel
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Secure communication (random shared key)

Message:          0  0  1  1  0  1
Random key:   1  0  1   0  0  1

Random key:   1  0  1   0  0  1

Message to send:   1  0  0   1  0  0

⊕

This is random too

Faulty channel
Message to send:   1  0  0   1  0  0 ⊕

Message:          0  0  1  1  0  1

Secure communication needs a random shared key

Classically there is no way to provide absolute security for key distribution
17



Quantum key distribution

𝜎𝑥: 0: + , 1: ȁ−ۧ

𝜎𝑧: 0: 0 , 1: ȁ1ۧ

Measures in either
𝜎𝑥 or 𝜎𝑧

Alice 
basis

Message Bob 
basis

Basis 
matching

X 0 Z X

X 0 Z X

Z 1 X X

X 1 X √

Z 0 X X

Z 1 Z √

X 0 X √

Alice sends − and Bob measures it right

Alice sends 1 and Bob measures it right

Alice sends + and Bob measures it right

18



Quantum key distribution in Space

S.-K. Liao, et. al., Nature 549, 43 (2017)  
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Application 2: quantum computation/simulation
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Quantum computer
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ȁ ۧΨ
ȁ ۧ𝜙

𝑈What is a quantum computer:
➢ Programmable machine
➢ Implements any unitary operator
➢ Can convert any quantum state into another

Every unitary operator can be decomposed into:

➢ Arbitrary single qubit rotations (SU(2) rotation)

𝑈 𝛼, 𝛽, 𝛾 = 𝑒−𝑖(𝛼𝜎𝑥+𝛽𝜎𝑦+𝛾𝜎𝑧)

➢ One two-qubit entangling gate

𝑈𝐶𝑁𝑂𝑇 =

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

𝑈𝐶𝑁𝑂𝑇:

ȁ ۧ00 → ȁ ۧ00

ȁ ۧ01 → ȁ ۧ01

ȁ ۧ10 → ȁ ۧ11

ȁ ۧ11 → ȁ ۧ10

𝜎𝑥 =
0 1
1 0

, 𝜎𝑦 =
0 −𝑖
𝑖 0

, 𝜎𝑧=
1 0
0 −1



NISQ era
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Noisy Intermediate Scale Quantum (NISQ) devices are available.

➢ Noisy ~ Limited coherence time (~ 300 − 400 CNOT gates)

➢ No error correction

➢ Intermediate Scale (devices with ~200 − 300 qubits are available) 

➢ Limited qubit connectivity 



Hubbard model (High-T superconductors, … )

𝐻 = −𝐽 

<𝑖,𝑗>,𝜎

Ƹ𝑐†𝑖,𝜎 Ƹ𝑐𝑗,𝜎 + 𝑈

𝑖

ො𝑛𝑖,↑ ො𝑛𝑖,↓

𝑖𝑗

More than 180 cold atom laboratories  worldwide  !  

Quantum simulation

2^300 > Number of protons in the universe!!

Classical computers cannot handle exponential problems

Complex 
quantum 

system

Controllable
quantum 

system

Quantum 
simulator

Salfi, et al, Nat. Commun. 7 
11342 (2016) 23



Why quantum simulators?
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➢ Classical computers are not capable of solving quantum problems due to the exponential growth 
of the Hilbert space (~ 2N)

➢ Better controllability (e.g. high Tc superconductivity)

➢ Classical big-data problems might be solved faster on quantum 
computers/simulators

➢ Some theoretical models do not exist in nature (e.g. Kitaev toric model)



Quantum simulators
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Cold atoms in optical lattices
Ion traps

Quantum dot arrays
Superconducting 

quantum simulators

Rydberg atoms



NISQ era
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Noisy Intermediate Scale Quantum (NISQ) devices are available.

➢ Noisy ~ Limited coherence time (~ 300 − 400 CNOT gates)

➢ No error correction

➢ Intermediate Scale (devices with ~200 − 300 qubits are available) 

➢ Limited qubit connectivity 



Variational Quantum Algorithms

Circuit
𝜃𝑘

ȁ ۧ0

ȁ ۧ0

ȁ ۧ0

ȁ ۧ0

ȁ ۧ0

ȁ ۧ0

ቚ𝜓( Ԧ𝜃)

𝐶 Ԧ𝜃 = 𝜓( Ԧ𝜃) 𝐻 𝜓( Ԧ𝜃)

Measuring a 
cost function

Updating the 

Circuit parameters 𝜽

➢ Complexity is divided between a quantum simulator (i.e. a shallow circuit) and a classical optimizer
➢ Only problems which can be written variationally can be solved
➢ By choosing the observable to be the Hamiltonian then the final output becomes the ground state
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Resources
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VQE is a hybrid algorithms using both quantum circuit and classical optimizations

1. Quantum circuit:  
➢Number of layers or number of CNOTs

2. Classical minimization:
➢ Number of iterations in gradient decent algorithm (convergence speed)
➢ The number of parameters to optimize

Classical resources:  CR=Number of parameters × Iterations



Comparison between adiabatic and VQE
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VQE can be implemented on a shallow circuit



Implementing symmetries in VQE

1- Penalizing the cost function:         𝐶 𝜃 = 𝐻 + 𝑆 − 𝑆𝑡𝑎𝑟
2

𝐻, 𝑆 = 0 𝐻 and 𝑆 have common eigenvectors 

2- Implementing the symmetries in the quantum circuit so that  ۧȁ𝜓(𝜃) naturally 
conserves the symmetry

Symmetry
preserving

Circuit
𝜃𝑘

ȁ ۧ0

ȁ ۧ0

ȁ ۧ0

ȁ ۧ0

ȁ ۧ0

ȁ ۧ0

ۧȁ𝜓(𝜃)
The circuit output naturally conserves 
the symmetry:  𝜓(𝜃) 𝑆 𝜓(𝜃) = 𝑆𝑡𝑎𝑟
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Implementation of symmetries in the hardware is more 
resource (both quantum and classical) efficient



Quantum machine learning
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Machine learning
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1- Supervised learning: To predict the label of an unknown input data,
e.g. classification.

2- Unsupervised learning: To group the inputs according to their similarities,
e.g. clustering.

3- Reinforcement learning: There is no data to train. The system learns by 
rewarding (or punishing) the desired (undesired) outputs. 



Classification Problems
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Thanks to the Internet, we have loads of labeled data

Classification is one of the main machine learning algorithms

Cats vs Dogs (2 classes: binary) Handwriting digits (10 classes)



Quantum classifiers
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➢ Can quantum computers solve classification problems? 

➢ If so, can they outperform classical classifiers?

➢ Datasets can be either classical (handwriting) or quantum (ground state of a Hamiltonian).

➢ For quantum datasets it is likely that quantum computers are useful.

➢ For classical datasets it is still an open problem whether quantum computers can provide
any advantage.



Encoding classical datasets
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Input data:   𝒙𝒊 = (𝑥𝑖1, 𝑥𝑖1, … , 𝑥𝑖𝑁)

Amplitude encoding:  It provides an exponential advantage.  Number of qubit=log(𝑁)

Encoder
𝑥𝑖 ⋮⋮

ȁ0ۧ
ȁ0ۧ

ȁ0ۧ
ȁ0ۧ

𝒙𝒊

Rotation encoding:  It is easy for experiments but without advantage in scaling. Number of qubit=𝑁

⋮

𝑅𝑦(𝑥𝑖1)

𝑅𝑦(𝑥𝑖2)

𝑅𝑦(𝑥𝑖𝑁)

ȁ0ۧ

ȁ0ۧ

ȁ0ۧ

ȁΨ(𝒙𝒊)ۧ



Variational classifiers
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⋮⋮

ȁ0ۧ
ȁ0ۧ

ȁ0ۧ
ȁ0ۧ

𝒙𝒊

Encoder
𝑥𝑖

Parameterized
circuit

Ԧ𝜃

Measurement 
outcome

Class Probability

00 0 𝑃00

01 1 𝑃01

10 2 𝑃10

11 3 𝑃11

➢ The largest probability determines the class

➢ For probability vector 𝑃𝑖 = (𝑃𝑖1, 𝑃𝑖2, … ) The loss function can be defined as:  𝑌𝑖 = (0,0,1,0)

ℒ Ԧ𝜃 = −

𝑖

𝑌𝑖
𝑇log(𝑃𝑖)



MNIST dataset (odd digits)
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➢ Each image is a 8 × 8 pixels (64 features)

➢ Four different classes (odd numbers)



Quantum circuit
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We use amplitude encoding but the protocol works for rotation encoding too

Error rate: Where 𝕀 True =1  and 𝕀 False =0 



The effect of layers
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➢ In a noise-free quantum computer the accuracy increases by increasing the layers

➢ Training and test errors remain close to each other showing the absence of over-fitting



Application 3: quantum sensing
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Sensing procedure

Measurement Estimator Unknown parameter 
is estimated

The probe, measurement basis and estimators should be optimal 

41

Probe



Classical Fisher information

One can measure a random variable 𝑋 for measuring an unknown parameter 𝜃

𝑋 can be the height of the thermometer’s liquid

𝜃 can be temperature

With the probability of 𝑃𝑥(𝜃) the height is 
measured to be 𝑥

𝛿𝜃2 = 𝜃𝑒𝑠𝑡 − 𝜃𝑟𝑒𝑎𝑙
2 ≥

1

𝑀𝐹(𝜃)
Cramer-Rao inequality:

Fisher information:  𝐹 𝜃 = 

𝑥

𝑃𝑥(𝜃)
𝑑 log(𝑃𝑥(𝜃))

𝑑𝜃

2

=

𝑥

1

𝑃𝑥(𝜃)

𝑑 𝑃𝑥(𝜃)

𝑑𝜃

2

Larger Fisher information implies better sensitivity

M is the number of repetition
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Quantum Fisher information

1. One can choose both measurement basis and the estimator

2. For any choice of measurement we have projectors: {Mk}

3. The probability of each outcome is:

4. Then quantum Fisher information: Fq(θ) = Max{Mk}[Fc(θ)] 

𝜌(𝜃) Estimate 𝜃

𝐹𝑞 ≥ 𝐹𝑐

𝑝𝑘 𝜃 = 𝑡𝑟[𝜌(𝜃)𝑀𝑘]
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For a classical probe of size N, at best one can achieve:     𝐹𝐶 = 𝑁



Quantum Fisher Information

𝐹𝑞 𝜃 = 4 ർ𝜕𝜃Ψ 𝜃 ۧȁ𝜕𝜃Ψ 𝜃 − ൻΨ 𝜃 ȁ ۧ𝜕𝜃Ψ 𝜃
2

For pure states: 𝜌 𝜃 = ȁ ۧΨ(𝜃) ۦ ȁΨ(𝜃)
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𝜌 𝜃 = 

𝑘

𝑞𝑘(𝜃)ȁ ۧ𝜓𝑘(𝜃) ۦ ȁ𝜓𝑘(𝜃) SLD
𝜕𝜌 𝜃

𝜕𝜃
=
𝐿 𝜃 𝜌 𝜃 + 𝜌 𝜃 𝐿(𝜃)

2

𝐹𝑞 𝜃 = 𝑇𝑟 𝜌 𝜃 𝐿2(𝜃)

➢ Optimal measurement basis will be the eigenstates of 𝐿 𝜃

➢ The optimal basis might depend on the unknown parameter 𝜃

➢ Super linear scaling (i.e. quantum enhanced sensitivity) might be possible



Quantum sensing

ȁΨ0ۧ =
ȁ ۧ0,0, … , 0 +ȁ ۧ1,1, … , 1

2
ȁ ۧΨ𝑡 = 𝑒−𝑖𝐻𝑡ȁΨ0ۧ =

ȁ ۧ0,0, … , 0 +𝑒−𝑖𝑁𝐵𝑡ȁ ۧ1,1, … , 1

2

Proper measurement

𝑃𝑥+=𝑐𝑜𝑠2 𝑁𝐵𝑡

𝑃𝑥− = 𝑠𝑖𝑛2(𝑁𝐵𝑡)

Fisher information: 𝐹 𝐵 = 4𝑁2𝑡2 Precision 𝛿𝐵2 ≥
1

4𝑁2𝑡2
Heisenberg limit

𝐻 = 𝐵

𝑘

𝜎𝑘
𝑧

V. Giovannetti, S. Lloyd, and L. Maccone, Science 306, 1330 (2004).
V. Giovannetti, S. Lloyd, and L. Maccone, Phys. Rev. Lett. 96, 010401 (2006).
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H. Kwon, K. C. Tan, T. Volkoff, and H. Jeong, Phys. Rev. Lett. 122, 040503 (2019).
J. Joo, W. J. Munro, and T. P. Spiller, Phys. Rev. Lett. 107, 083601 (2011).
S. Slussarenko, et al.,  Nature Photonics 11, 700 (2017). 45



Criticality enhanced sensing

𝐻 = 𝜃𝐻1 + 𝐻2 ȁ ۧ𝐺𝑆(𝜃) Can one estimate 𝜃 directly from the ground state?

𝐹𝑞 𝜃 ~𝑁2/𝑑𝑣Near criticality (𝜃 ≈ 𝜃𝑐):

Far from criticality: 𝐹𝑞 𝜃 ~𝑁 𝜃 − 𝜃𝑐
𝑑𝜐−2

For Ising in transverse field (𝑑 = 1, 𝜐 = 1) around criticality: 𝐹𝑞 𝜃 ~𝑁2 Heisenberg limit

P. Zanardi and N. Paunkovic, Phys. Rev. E 74, 031123 (2006).
P. Zanardi, H. T. Quan, X. Wang, and C. P. Sun, Phys. Rev. A 75, 032109 (2007).
P. Zanardi, M. G. A. Paris, and L. Campos Venuti, Phys. Rev. A 78, 042105 (2008).
C. Invernizzi, M. Korbman, L. C. Venuti, and M. G. A. Paris, Phys. Rev. A 78, 042106 (2008).
M. Skotiniotis, P. Sekatski, and W. Dur, New J. Phys. 17, 073032 (2015).
S.-J. Gu, Int. J. Mod. Phys. B 24, 4371 (2010).
S. Gammelmark and K. Mølmer, New J. Phys 13, 053035 (2011). 46



Quantum enhanced sensitivity
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What is responsible for quantum enhanced sensitivity?

❑ Scale invariance
❑ Symmetry-breaking
❑ Long-range entanglement/correlations
❑ Gap closing



Symmetry protected topological Systems 

Topological properties don’t change under continuous deformations.

Phase transitions in such systems are not captured by Landau’s theory:

➢ They are captured by of a global order parameter

➢ There is no symmetry breaking 

➢ There is no long-range entanglement

➢ The gap closing still remains valid

➢ Zero energy edge states emerge in the system 
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Around the critical point the edge states show Heisenberg precision

This shows that gap closing is the key feature for quantum enhanced sensitivity 



Summary
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Quantum technologies may change our lives in a fundamental way in coming decades

Quantum features (such superposition and measurement) can be exploited for surpassing the 
performance of classical devices. 

The most important aspects of quantum technologies are:
➢ Quantum communications
➢ Quantum simulation
➢ Quantum sensing 


