

Project 8: Neutrino Mass Measurement Using Cyclotron Radiation Emission Spectroscopy

Isfahan University of Technology

Ali Ashtari Esfahani

Khordad 1402

- Neutrino mass
- Cyclotron Radiation Emission Spectroscopy (CRES)
- Project 8 apparatus
- Analyzing the CRES spectrum
- Tritium spectrum and neutrino mass measurement

Neutrinos in SM

three generations of matter (fermions) Ш ≈172.44 GeV/c² ≈2.4 MeV/c² ≈1.275 GeV/c² ≈125.09 GeV/c² mass 2/3 2/3 charge 2/3g Η t С u 1/2 1/2 spin 1/2 Higgs charm gluon top up ≈4.8 MeV/c² ≈95 MeV/c² ≈4.18 GeV/c² **QUARKS** -1/3 -1/3-1/3 O γ S b C 1/2 1/2 1/2 Ñ **O** B bottom photon strange down SCALAR ≈0.511 MeV/c² ≈1.7768 GeV/c² ≈105.67 MeV/c² ≈91.19 GeV/c² -1 SONS e μ τ 1/2 1/2 1/2 electron Z boson muon tau 0 EPTONS â <2.2 eV/c² <15.5 MeV/c² ≈80.39 GeV/c² <1.7 MeV/c² B ±1 W Ve v_{τ} Vμ 1/2 1/2 1/2 GAU electron muon tau W boson neutrino neutrino neutrino

Standard Model of Elementary Particles

Three flavors of neutrinos as massless fermions in the standard model of particle physics.

 $\begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix} = \begin{pmatrix} PMNS \end{pmatrix} \begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix}$

Neutrinos cannot be massless!

The neutrino oscillation experiments left two questions unanswered:

- mass ordering ?
- absolute scale ?

- Massive neutrinos play a role in the formation of the large structures in the universe.
- Data from CMB, large structure of galaxies, type Ia supernova, and big-bang nucleosynthesis can be used to look for the neutrino mass.

$$\sum m_{\nu} < 0.26 \ eV/c^2 \ (95\% \ C. L.)$$

A. Loureiro et al., Upper bound of neutrino masses from combined cosmological observations and particle physics experiments. Phys. Rev. Lett., 123:081301, Aug 2019.

Search for absolute scale in neutrino-less double beta decay

If neutrinos are Majorana fermions, detection of neutrinoless double beta decay can be used to find the neutrino mass.

$$m_{\beta\beta}^2 = \left| \sum U_{ei}^2 m_i \right|^2$$

$$m_{\beta\beta} < 61 - 165 \ meV/c^2$$

 Neutrino mass has its mark on the beta decay spectrum.

Project 8: Neutrino Mass Measurement Using Cyclotron Radiation Emission Spectroscopy

 Tritium beta decay is the most popular processes in the direct search.

Project 8: Neutrino Mass Measurement Using Cyclotron Radiation Emission Spectroscopy

- Tritium beta decay is the most popular processes in the direct search.
 - Endpoint energy of 18.6 keV

- Neutrino mass has its mark on the beta decay spectrum.
- Tritium beta decay is the most popular processes in the direct search.
 - Endpoint energy of 18.6 keV
 - Half life time of 12.3 y
 - Branching ratio of 2.10⁻¹³ to the last eV bin of the spectrum

• KATRIN main spectrometer uses the traditional MAC-E filter method for electron energy measurement.

• KATRIN main spectrometer uses the traditional MAC-E filter method for electron energy measurement.

KATRIN results

 Currently the best limit is from KATRIN collaboration

$$m_{\beta} = \sqrt{\sum |U_{ei}|^2 m_i^2}$$
< 0.8 eV/c² (90% C.L.)

 O Ultimate sensitivity of KATRIN to neutrino mass is 200 meV.

Cyclotron radiation from electron carries information about its energy

$$f_0 = \frac{1}{2\pi} \frac{eB}{m}$$

Cyclotron radiation emission spectroscopy (CRES)

Cyclotron radiation from electron carries information about its energy

$$f_0 = \frac{1}{2\pi} \frac{eB}{m}$$
 $f_c = \frac{f_0}{\gamma} = \frac{1}{2\pi} \frac{eB}{m + E_{kin}/c^2}$

B field

Cyclotron radiation from electron carries information about its energy

Cyclotron radiation from electron carries information about its energy

- No electron transport from source to detector
- Differential spectrum measurement
- Precise frequency measurement \Rightarrow **Excellent energy resolution**
- Low background

Apparatus overview

- NMR magnet produces the ~ 1
 T background field
- Cyclotron frequency for 18 kev
 - ~26 GHz
 - ~ 1 fW
- Gas system feeds the gas cell with Kr/T₂
- Two stages of cryogenic amplifiers amplify the signal

- 5 coils act as the magnetic bottle trap to confine electrons
- TE₁₁ mode of the circular waveguide couples to the electron's radiation
- 2 Caf₂ windows trap the gas inside the cell without disturbing the RF transparency
- RF terminator used to avoid interference of signals

Project 8: Neutrino Mass Measurement Using Cyclotron Radiation Emission Spectroscopy

Project 8: Neutrino Mass Measurement Using Cyclotron Radiation Emission Spectroscopy

Project 8: Neutrino Mass Measurement Using Cyclotron Radiation Emission Spectroscopy

Project 8: Neutrino Mass Measurement Using Cyclotron Radiation Emission Spectroscopy

Project 8: Neutrino Mass Measurement Using Cyclotron Radiation Emission Spectroscopy

- ^{83m}Kr is the decay product of ⁸³Rb
- ^{83m}Kr decays to its ground state in a cascade of two internal conversions which release conversion electrons

- ^{83m}Kr is the decay product of ⁸³Rb
- ^{83m}Kr decays to its ground state in a cascade of two internal conversions which release conversion electrons

Line	Energy (keV)	
К	17.824	
L2	30.419	
L3	30.472	
M2	31.929	
M3	31.936	
N2	32.136	
N3	32.137	

Trapping geometry

- Deep trap Configuration for high event rate
- Shallow trap configuration for better energy resolution

- Peak width 1.66 eV (FWHM)
- Deep trap Configuration
 - Peak width 54.3 eV (FWHM)
 - 40× higher event rate

$$\mathcal{S} = \epsilon \left(\mathcal{Y} * \mathcal{R}_{PSF} \right)$$

$$\mathcal{S} = \epsilon \left(\mathcal{Y} * \mathcal{R}_{PSF} \right)$$
 Efficiency

- Lorentzian with fixed width for Krypton data (2.8 eV for K-line)
- Shake up and shake off electrons

Scatter peak amplitude

Proportional to the probability that electron is first detected after j scatters

$$\mathcal{R}_{PSF} = \sum_{j=0} \mathcal{A}_j (\mathcal{I} * \mathcal{L}^{*j})$$

Instrumental resolution -Caused by the difference in the magnetic field experienced by different electrons

Energy loss distribution after j scatters Depends on the cross section, fraction of each gases,

and

Scattering

$$\mathcal{R}_{PSF} = \sum_{j=0}^{\infty} \mathcal{A}_j \big(\mathcal{I} * \mathcal{L}^{*j} \big)$$

Project 8: Neutrino Mass Measurement Using Cyclotron Radiation Emission Spectroscopy

Scattering

Project 8: Neutrino Mass Measurement Using Cyclotron Radiation Emission Spectroscopy

Field shifting solenoid is installed inside the NMR magnet bore to change the field inside the bore and move the krypton K line in the frequency region of interest

Field shifting solenoid is installed inside the NMR magnet bore to change the field inside the bore and move the krypton K line in the frequency region of interest

Field shifting solenoid is installed inside the NMR magnet bore to change the field inside the bore and move the krypton K line in the frequency region of interest

Project 8: Neutrino Mass Measurement Using Cyclotron Radiation Emission Spectroscopy

Tritium pressure inside the cell was controlled using a nonevaporable getter

> absorption $H_2 + 2ZrAl \rightleftharpoons 2(ZrAl - H)$ desorption

Tritium pressure inside the cell was controlled using a nonevaporable getter

 $\begin{array}{rcl} absorption \\ H_2 + 2ZrAl & \rightleftharpoons & 2(ZrAl - H) \\ desorption \end{array}$

- Continuous pumping of H2, CO, CO2, H2O, CH4
- Pressure Regulation
- Successful test with D₂

3 DAQ channels were arranged to cover 25810 – 25990 MHz corresponding to 16.2 - 19.8 keV

Project 8: Neutrino Mass Measurement Using Cyclotron Radiation Emission Spectroscopy

Expected spectral shape is calculated

$$\mathcal{S} = \epsilon \left(\mathcal{Y} * \mathcal{R}_{PSF} \right)$$

- 3770 distinct tritium events were recorded in 82 days
- No event beyond the endpoint energy
- Frequentist and Bayesian analysis were performed

Endpoint energies agree with the literature value $E_0 = 18574 \text{ eV}$

	End point [eV]	m_{β} limit [eV/ c^2]
Bayesian	18553^{+18}_{-19}	<155
Frequentist	18548^{+19}_{-19}	<152

Endpoint energies agree with the literature value $E_0 = 18574 \text{ eV}$

	End point [eV]	m_{β} limit [eV/ c^2]
Bayesian	18553^{+18}_{-19}	<155
Frequentist	18548^{+19}_{-19}	<152

Contributions to uncertainty in endpoint energy uncertainty

Uncertainty	Parameters	$\sigma(E_0)$ [eV]
Magnetic field	В	4
Magnetic field broadening	σ	4
Scattering	$\gamma_{\rm H_2}, \mathcal{A}_i$	6
Efficiency variation	e s	4
Other freq. dependence	$\sigma(f_c), \mathcal{A}_j(f_c)$	6
Systematics total		9
Statistical		17

- o Phase I
 - First detection of CRES with ^{83m}Kr
- o Phase II
 - First continuous spectrum measurement with T₂
- o Phase III
 - Atomic source development
 - Large-volume CRES
 - Expected sensitivity $m_{\beta} \sim 100 \ meV$
- \circ Phase IV
 - Neutrino mass measurement if

 $m_{\beta} < 40 \ meV$

- First frequency-based measurement of tritium beta spectrum were performed
- Cyclotron Radiation Emission Spectroscopy was proved to be a viable technique as the next step in direct neutrino mass measurement with high resolution and low background

Thank you

TUT

P