In the Name of God

Quantum spectroscopy by photons that have not touched the sample Hamidreza Mohammadi University of Isfahan

Quantum phenomena do not occur in a Hilbert space. They occur in a laboratory.

A. Peres

• Nonlinear quantum optics:

Metrology beyond the quantum standard limit.

- Spontaneous Parametric Down Conversion (SPDC).
- Quantum Imaging:

Induced coherence without induced emission.

- . IR Quantum Spectroscopy with visible light.
- Discussion.

Metrology beyond the quantum standard limit. Inquiry: precise phase measurement Quantum Standard Limit shot Noise Limit(SND)

Metrology beyond the quantum standard limit. Inquiry: precise phase measurement For homodyne detection of a coherent state in an SU(2) interferometer we have:

SNL

AM= KA>; dr

We can pass SNL by Using Squeezed state instead:

min eller a RK.

Dele

Metrology beyond the quantum standard limit. Inquiry: precise phase measurement We can improve the resolution of phase measurement by using single photon in interferometer: Single photon => 10M=1 Jun/1= (in) => 3.4 = 1 Jun (1)

DADN), 12 DAD - (m) DAJNN, 12 DAD - (m) DAJNN, 12 DAD - (m) MAX Heisenberg

Metrology beyond the quantum standard limit. Inquiry: precise phase measurement Also, using entangled NOON states in interferometer can help us to reach Heisenberg limit.

 $|NOON\rangle = \frac{1}{52}(|NO\rangle + |ON\rangle)$ APRIL = 1/V

RNOON RSingle photon Anger photon N go Lithography to Inaging 4/20

For example: LIGO Interferometer:

DA SHE AL ~ · · / / ~ P=lookw ->n~lo /c AX= 14) 100 2 m AL - JAG coherent state > DXME A Carlos Single photon state = 15x = 2

Non-Linear Interferometer

Nonlinear Interferometer:

1966

SU(1,1) nonlinear Interferometers:

a) March-Zender In b) Michelson Int. c) Young Int. d) Saganac Int.

The fringe enhancement of SU(1,1) w.r.t. SU(2) Int.

NATURE COMMUNICATIONS DOI: 10.1038/ncomms4049

Idea:

Using SPDC as two-mode squeezer in a non-linear interferometer, for the purpose of high precision phase measurement for spectroscopy and characterization of optical component.

Spontaneouse Parametric Down-Conversion (SPDC)

$$\mathbf{P} = \epsilon_0 \chi^{(1)} \mathbf{E} + \epsilon_0 \chi^{(2)} \mathbf{E}^2 + \epsilon_0 \chi^{(3)} \mathbf{E}^3 \dots$$
$$= \epsilon_0 \sum_{n=1,2,3,\dots} \chi^{(n)} \mathbf{E}^n,$$

Sppc Types:

Type I: $o \longrightarrow e + e, e \longrightarrow o + o,$

Type II: $o \longrightarrow o + e$, $e \longrightarrow o + e$.

20

13

phase matching process can controlled by 1- crystal 2- proper crystal cutting 3- Alphal

Spontaneouse Parametric Down-Conversion (SPDC)

Bell inequality Test & Quantum Tomography

Can the yellow paths interfere? Two SPDC sources

Can the yellow paths interfere? Yes

Induced Coherence without Induced

0.8

Experimental setup

Paterova, A., et al. "Measurement of infrared optical constants with visible photons." New Journal of Physics 20(4): 043015. (2018).

Measurement and Optical characterization

Measurement and Optical characterization

$$P_{s} \propto 2[1 + |\tau_{i}|^{2}|\mu(\Delta t)|\cos(\varphi_{p} - \varphi_{s} - \varphi_{i} + \arg\tau^{2} + \arg\mu(\Delta t))],$$
$$\mu(\Delta t) = \int |F(\Omega)|^{2} e^{-i\Omega\Delta t} d\Omega,$$

 $\Delta t = t_0 + t_2 - t_1$

$$\Delta \varphi_i = 2 \frac{2\pi n_i'}{\lambda_i} \Delta x$$

$$V = \frac{P_s^{\max} - P_s^{\min}}{P_s^{\max} + P_s^{\min}} = |\mu(\Delta t)| |\tau|^2$$

$$\frac{V}{V_{\rm ref}} = \frac{|\tau_{\rm app}|^2 |\tau|^2}{|\tau_{\rm app}|^2} = |\tau|^2 \equiv T$$

$$|\tau|^2 = ((1 - |r|^2)e^{-\frac{\alpha L_m}{2}})^2 = (1 - R)^2 e^{-\alpha L_m}$$

دکتر مهدی داودی

دكتر على مهرى تونابى

دكتر حمزه نورالهي

سعید اکبری(دانشجوی دکتری)

Thank you for your altention

Questions??

دومین همایش ملی فناوری های کوانتومی Ndظهور