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materials, for example, nitrogen-vacancy (NV) and silicon-
vacancy (SiV) centers in diamond,17 have tentatively brought
the attention of the community to substitutional and vacancy
defects. In particular, it is observed that the emitters can be
created by ion bombardment in a controlled fashion.46 More
recently, several DFT computational analyses have attributed
the emissions to charge neutral native and substitutional defects
with deep band gap energy levels.25,47,48 These reports lay the
groundwork for further research on the physics of such defects.
But a group theory accompanied by DFT analysis is necessary
for a deeper understanding of these color centers which can
guide future experimental and theoretical works. A route that
have proven to be beneficial in diamond color centers, for
example, NV and SiV centers.49−51

Nonetheless, to the best of our knowledge, there is no group
theoretical investigation on these single photon emission
candidates. To provide a better understanding on their
electronic and magnetic properties, here we provide an analysis
based on symmetry observations on a few of the most relevant
candidates and take advantage of the observations made in the
experiments and our ab initio calculations to explain such
properties of the optical emitters via group theory analysis. By
determining the symmetry-adapted total wave functions of the
multielectron states we present energy ordering of such states
aided by our advanced DFT calculations. We perform thorough
analyses on the effect of spin−orbit and spin−spin interactions
as well as applied electric fields, as first inevitable step, at fixed
coordinate of the atoms associated with the potential energy
surface minimum at the given electronic configuration. The
effect of electron−phonon coupling on the results will be
discussed briefly as well. These studies allows us to come to the
conclusion that the defects we are investigating here correlate
well with the observed emitter species in the experiments.
Remarkably, their electronic and magnetic properties allow for
applications in quantum control and information processing.11

Hexagonal boron nitride can accommodate a wide variety of
local defects in its lattice structure. This includes the most
stable vacancy incorporated representatives: boron vacancy VB,
nitrogen vacancies VN, a complex antisite which is a nitrogen
vacancy next to a nitrogen antisite VNNB, and substitutional
antisite defect like VNCB (see Figure 1). Our focus will be on
the cases that can offer a platform for future quantum
technological applications due to their nontrivial ground spin
state. That is, those defects whose ground state is not a spin

singlet. It is worth mentioning here that defects with electronic
spin-singlet ground state can still be interesting provided their
optical excited state has a nonzero spin state and in strong
interaction with some neighboring spin systems, e.g. nuclear
spins, though demanding more complicated control protocols.
The observations on optical single-photon emitters strongly
supports the likelihood of defects with a vacancy. Furthermore,
such defects are being created in a rather controllable way by
ion irradiation.52 Therefore, we place our focus on defects with
one vacancy. Observation of VN and VB defects is already
reported in a TEM experimental work;32 however, visual
evidence on the existence of VNNB and VNCB is yet to come
out.
In this Article, we provide a thorough group theoretical

analysis combined with DFT calculations on the defects of our
interest, namely the neutral VNNB and the negatively charged
VB. The order of many-body levels are determined by our
advanced DFT calculations. Note that positively charged VNCB,
as well as the singlet state situations resulting from the
negatively and positively charged VNNB and neutral VNCB, is
not excluded from being the source of single photon emission.
Therefore, their electronic diagram and spin properties are
discussed in the Supporting Information.

■ NEUTRAL VNNB

The geometry of this defect is shown in Figure 1. As supported
by previous ab initio simulations it has C2v point group
symmetry.12 Our hybrid DFT calculations also support this
conclusion (see Figure 2b). Here we apply the molecular
orbital technique to build up the total wave functions and hence
our subsequent theory. The identification of defect energy
levels in the band gap as well as the localization of
corresponding orbitals allows us to analyze them via “defect
molecular diagram”.
Because of its hexagonal structure of the lattice the σ-

dangling bonds around the vacancy are sp2 orbitals, which result
from hybridization of 2s, 2px, and 2py orbitals; hence, they lie
mostly on the plane of the layer. Meanwhile, the 2pz orbitals
perpendicular to the plane provide π-dangling bonds in the
monolayer case. This is also valid for a multilayer membrane, as
the interlayer bonds are of weak van der Waals nature.
Therefore, the atoms in the neighboring layers do not affect
significantly the defect dynamics. This has been verified by the
ab initio computations12 where the electronic structure of point
defects in mono- and three-layer h-BN membranes show
negligible discrepancies. The x-axis is the symmetry axis of the
VNNB defect, which points from the vacancy to the nitrogen
atom (Figure 1). The atomic dangling bonds are named after
their variety (σ or π) and the atom of origin: {σN, σB1

, σB2
, πN,

πB1
, πB2

}. Construction of the symmetry-adapted molecular
orbitals (MOs) facilitates our further analyses. They provide the
basis functions that diagonalize the attractive Coulomb
Hamiltonian of the defect. These MOs are linear combinations
of the set of atomic orbitals listed above, which are the bases for
the irreducible representations of the defect point group. One
finds them by applying the projection method.53 The MOs in
the energy order from lowest to highest are13,48
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Figure 1. Geometry of various possible defects in h-BN. Note that
VNNB and VNCB defects have C2v point group symmetry with their axis
of symmetry laying in the plane (x-axis here), while the rest of defects
have D3h point group symmetry with the symmetry axis pointing out of
the plane (z-axis).
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FIG. 2. The measured number of coincidences as a function
of beam-splitter displacement c Bi, superimposed on the solid
theoretical curve derived from Eq. (11) with R/T =0.95,
Aco =3 x 10 ' rad s '. For the dashed curve the factor
2RT/(R +T ) in Eq. (11) was multiplied by 0.9. The verti-
cal error bars correspond to one standard deviation, whereas
horizontal error bars are based on estimates of the measure-
ment accuracy.

time spread of the photoelectric pulses and the slewing of
the discriminator pulses, a range of time intervals cen-
tered on zero delay was obtained with a spread of several
nanoseconds. For the purpose of the measurement, pulse
pairs received within a 7.5-ns interval were treated as
"coincident. " Pulse pairs received within an interval of
35 to 80 ns were regarded as accidentals, and when
scaled by the factor 7.5/45 provided a measure of the
number of accidental coincidences that occur within any
7.5-ns interval.
The results of the experiment are presented in Fig. 2,

which is a plot of the number of observed photon coin-
cidences, after subtraction of accidentals, as a function
of the displacement of the beam splitter. It will be seen
that for a certain symmetric position of the beam spli-
tter, the two-photon coincidence rate falls to a few per-
cent of its value in the wings, by virtue of the destructive
interference of the two two-photon probability ampli-
tudes. The width of the dip in the coincidence rate pro-
vides a measure of the length of the photon wave packet.
It is found to be about 16 pm at half height, correspond-
ing to a time of about 50 fs, which should really be dou-
bled to allow for the greater movement of the mirror im-
age. This time is about what is expected from the
passband of the interference filters.
Direct measurements of the beam-splitter reAectivity

and transmissivity show that R/T = 0.95, which makes
the combination 2RT/(R +T ) =0.999, and implies
that iV, should fall close to zero when 6~=0. That it
does not fall quite that far is probably due to a slight
lack of overlap of the signal and idler fields admitted by
the two pinholes, causing less than perfect destructive in-
terference. The solid curve in Fig. 2 is based on Eq. (11)
with R/T=0. 95 and Ato=3x10' rad/s =5x10' Hz,
if we identify c6'i with the beam-splitter displacement
(x —302.5) in micrometers. For the dashed curve the
factor 2RT/(R + T ) was multiplied by 0.9 to allow for
less than perfect overlap of the signal and idler photons.
It will be seen that, except for the minimum, Eq. (11) is
obeyed quite well, corresponding to a coherence time of
about 100 fs.
We have therefore succeeded in measuring sub-

picosecond time intervals between two photons, and by
implication the length of the photon wave packet, by
a fourth-order interference technique. Unlike second-
order interference, this method does not require that
path differences be kept constant to within a fraction of a
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"coincident. " Pulse pairs received within an interval of
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the two pinholes, causing less than perfect destructive in-
terference. The solid curve in Fig. 2 is based on Eq. (11)
with R/T=0. 95 and Ato=3x10' rad/s =5x10' Hz,
if we identify c6'i with the beam-splitter displacement
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less than perfect overlap of the signal and idler photons.
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obeyed quite well, corresponding to a coherence time of
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Summary and Outlook
Summary 
• hBN color centers 
• Phonons 
• Various coupling mechanisms 
• Quantum sensing 
• Quantum simula@on

Other works & Outlook 
• Simula@on with Nuclear spins   
• Sensing with Nuclear spins   
• Further characteriza@ons


