

Quantum Technologies

with Color Centers in hBN

Mehdi Abdi

Theoretical Quantum Optics and Quantum Technologies

Outline

Introduction

Hybrid Quantum Devices

hBN Color Centers

Vibrating Emitters

Sensing and Simulation

Outline

Introduction

Hybrid Quantum Devices

hBN Color Centers

Vibrating Emitters

Sensing and Simulation

Foundational

- Collapse models
- Classical—Quantum borderline

Foundational

- Collapse models
- Classical—Quantum borderline

- Sensing
- •

Foundational

- Collapse models
- Classical—Quantum borderline

- Sensing
- Communication
- •

Foundational

- Collapse models
- Classical—Quantum borderline

- Sensing
- Communication
- Simulation

Foundational

- Collapse models
- Classical—Quantum borderline

Technological

- Sensing
- Communication
- Simulation
- Computation

Schäfer-Nolte et al., *Phys. Rev. Lett.* (2014) Greif et al., *Science* (2013)

What photons truly are?

- Particle \$\square\$
- Wave **寒**

What photons truly are?

- Particle
- Wave **寒**

The strict and honest ontological answer to the question "What is a photon?" is that we don't really know.

What photons truly are?

Particle

The strict and honest ontological answer to the question "What is a photon?" is that we don't really know.

- Spontaneous emission
- Number states

What photons truly are?

Particle

● Wave **寒**

The strict and honest ontological answer to the question "What is a photon?" is that we don't really know.

- Spontaneous emission
- Number states

$$\hat{a}^{\dagger}\hat{a}|n\rangle = n|n\rangle$$

What photons truly are?

Particle

● Wave **寒**

The strict and honest ontological answer to the question "What is a photon?" is that we don't really know.

- Spontaneous emission
- Number states

$$\hat{a}^{\dagger}\hat{a}|n\rangle = n|n\rangle$$

What photons truly are?

Particle

● Wave **寒**

The strict and honest ontological answer to the question "What is a photon?" is that we don't really know.

- Spontaneous emission
- Number states

$$\hat{a}^{\dagger}\hat{a}|n\rangle = n|n\rangle$$

What photons truly are?

- Particle
- Wave **寒**

The strict and honest ontological answer to the question "What is a photon?" is that we don't really know.

- Spontaneous emission
- Number states

$$\hat{a}^{\dagger}\hat{a}|n\rangle = n|n\rangle$$

- Stimulated emission
- Coherent states
- Attenuated laser —

- Stimulated emission
- Coherent states

- Stimulated emission
- Coherent states

- Stimulated emission
- Coherent states

Hong, Ou, and Mandel (HOM)

Small tweak in the HBT experiment

Hong, Ou, and Mandel (HOM)

Small tweak in the HBT experiment

Hong, Ou, and Mandel (HOM)

- Small tweak in the HBT experiment
- Interference of Single-Photons

Hong, Ou, and Mandel (HOM)

- Small tweak in the HBT experiment
- Interference of Single-Photons

Hong, Ou, and Mandel (HOM)

- Small tweak in the HBT experiment
- Interference of Single-Photons

logic

What is a photon, ontological? We don't really know.

Hong, Ou, and Mandel (HOM)

- Small tweak in the HBT experiment
- Interference of Single-Photons

What is a photon, ontological? We don't really know.

Boson Sampling, Quantum Supremacy

- Large bandgap (Optical transitions)
- Localized defect (Spatial and Energy)
- Partial occupation by electrons

- Large bandgap (Optical transitions)
- Localized defect (Spatial and Energy)
- Partial occupation by electrons

- Large bandgap (Optical transitions)
- Localized defect (Spatial and Energy)
- Partial occupation by electrons

- Large bandgap (Optical transitions)
- Localized defect (Spatial and Energy)
- Partial occupation by electrons

Diamond Color Centers

- Pristine diamond is transparent
- Different colors

Diamond Color Centers

- Pristine diamond is transparent
- Different colors

Aharonovich and Neu, Adv. Opt. Mat. (2014)

Hybrid Devices

Superconducting Circuit

- Polariton-Phonon
- Nonclassical states
- Mechanical Fock

Hybrid Devices

Superconducting Circuit

- Polariton-Phonon
- Nonclassical states
- Mechanical Fock

Hybrid Devices

Superconducting Circuit

- Polariton-Phonon
- Nonclassical states
- Mechanical Fock

Hybrid Devices

Superconducting Circuit

- Polariton-Phonon
- Nonclassical states
- Mechanical Fock

Hybrid Devices

Superconducting Circuit

- Polariton-Phonon
- Nonclassical states
- Mechanical Fock

Motional Hybridization

Varieties

- Bulk Acoustic Resonator
- Strings
- Bats
- Surface Acoustic Resonator
- Graphene

Pirkkalainen et al., *Nature* (2013) Yeo et al., *Nat. Nanotechnol.* (2013) Gustafsson et al., *Science* (2014) Reserbat-Plantey et al., *Nat. Commun.* (2016) Chu et al., *Nature* (2018)

Motional Hybridization

Varieties

- Bulk Acoustic Resonator
- Strings
- Bats
- Surface Acoustic Resonator
- Graphene

Singh et al., *Nat. Nanotechnol.* (2014) Weber et al., *Nano Lett.* (2014) **MA** et al., *Phys. Rev. Lett.* (2016)

Singh et al., Nat. Nanotechnol. (2014) Weber et al., Nano Lett. (2014) MA et al., Phys. Rev. Lett. (2016)

Superconducting Circuits

Graphene

- high Coherence
- microwave
- strong Coupling to qubits
- nonlinearity

- high Quality
- flexural modes

Single-Photon Emitters in h-BN

hexagonal Boron Nitride

- Van der Waals
- Wide band gap (≈ 6.0 eV)
- Host for color centers

Wang et al., Mat. Tod. Phys. (2017)

nature nanotechnology

LETTERS

PUBLISHED ONLINE: 26 OCTOBER 2015 | DOI: 10.1038/NNANO.2015.242

Quantum emission from hexagonal boron nitride monolayers

Toan Trong Tran, Kerem Bray, Michael J. Ford, Milos Toth* and Igor Aharonovich*

Single-Photon Emitters in h-BN

hexagonal Boron Nitride

- Van der Waals
- Wide band gap (≈ 6.0 eV)
- Host for color centers

Wang et al., Mat. Tod. Phys. (2017)

SPEs

- Ultra-bright
- Stable
- Localized
- Room Temperature

nature nanotechnology

LETTERS

PUBLISHED ONLINE: 26 OCTOBER 2015 | DOI: 10.1038/NNANO.2015.242

Quantum emission from hexagonal boron nitride monolayers

Toan Trong Tran, Kerem Bray, Michael J. Ford, Milos Toth* and Igor Aharonovich*

Single-Photon Emitters in h-BN

Summary and Outlook

Summary

- hBN color centers
- Phonons
- Various coupling mechanisms
- Quantum sensing
- Quantum simulation

Other works & Outlook

- Simulation with Nuclear spins
- Sensing with Nuclear spins
- Further characterizations

