


ی شبکه تابع ساختار قطبیده با استفاده از چارچوب ترکیب QCDحلیل ت
الگوریتم ژنتیک–عصبی

آسترکیالهام 

غلامرضا برون

1404بهمن 

شانزدهمین کنفرانس فیزیک ذرات و میدان ها



های عصبیشبکه 
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برایهکشوندمیاطلاقماشینیادگیریهایمدلازخاصایدستهبه،عصبیهایشبکه
شودمیگفتهمدلیبهعصبی،شبکهیک.اندشدهبهینهوطراحیمختلفیهایفعالیتانجام

سان،انذهنیپردازشوتفکرروشازالهامباراهادادهتادهدمیاجازهمصنوعیهوشبهکه
.دهدقراربررسیمورد



متصلهاسلولردیگبهآکسونازاستفادهباآنها.استشدهتشکیلنوروننامباعصبیسلولمیلیارد86ازانسانمغز

درنورونبابرابریعصبشبکهدرگره.شده اندتشکیلنودیاگرهچندینازمصنوعیهوشعصبیهایشبکه.هستند

کهذهنیهاینورونهمچون.شوندمیمتصلیکدیگربهرشتهنامباابزاریازاستفادهباهاگره.استانسانمغز

هوشیعصبهایشبکهدرگرفتهقرارهایگرهدهند،میقراریکدیگراختیاردروکردهدریافترااطلاعات

بالتعامدرهموارههاگرهاینیعنی.دادخواهندقرارهانودسایراختیاردرپردازشازپسرااطلاعاتهممصنوعی

.دهندمیانجاماطلاعاترویرامتنوعیهایعملیاتوبودهیکدیگر

بررسی معماری پایه شبکه های عصبی



ساختار شبکه  های عصبی مصنوعی
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انواع توابع محرک
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یفرایند آموزش در شبکه عصبی مصنوع
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انواع شبکه های عصبی 
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مراحل ساخت یک شبکه عصبی مصنوعی
:دمیشوطییرزکلیحلامرمصنوعیعصبیشبکهلمدیکساختایبر

وهالایهادتعدیبهینهتعیین،شبکهعنوتعیین،عصبییشبکهریمعمایارساختاتعیینازرمنظو:شبکهرساختاتعیین:اولمرحله
.ستامناسبابجویکبهستیابیدایبرخطاوسعیروشبهپایهونتقالیابعاتوتعیینوشبکهیهاهگر

شبکهسبایایهاوزننیزوهالایهبینتباطیاریهاوزنحصلاا،عصبیشبکهزشموآازرمنظو:شبکهزشموآ:دوممرحله
یردمقاوشبکهجیوخریردمقابینفختلاایالمدیخطاکهدمیشوکاملمانیزشبکهزشموآ.ستادمتعدیهانمونهایبر

تامیشونددادهشبکهبهرباچندنظرردمویلگوابهطمربوشیزموآیهادادهف،هدینابهنسیدرایبر.دشوقلاحدفهد
کهمیشوندحصلااایگونهبههاوزن،رکاینادیازارتکربا.کندحصلاارادخویهاوزنهاآنازدهستفاابارباهردرشبکه
.هددئهارالقبوقابلجیوخر،شیزموآغیرورودییهادادهبرابردرستادرقاشبکه

بایهادادهستهدیکازدهستفااباشبکهآن،یهاوزنتصحیحوشبکهزشموآیندآفرتکمیلازپس:شبکهنموآز:مسومرحله
یردمقاتعییندرآنازانمیتو،باشدمیزآموفقیتشبکهنموآزکهتیرصودر.دمیگیرارقریابیارزردموممعلوجیوخر

.نموددهستفاامنامعلو
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تابع هدف و معیار ارزیابی شبکه عصبی

هدفتابععنوانه بخطامربعاتمیانگینازمصنوعی،عصبیشبکهبرازشکیفیتارزیابیمنظوربه 
واقعیقدارمازعصبیشبکهتوسطشدهتولیدخروجیانحرافمیزانمعیار،این.استشدهاستفاده
: شودمیتعریفزیر صورتبهو کندمی گیریاندازهراسیستم

𝑀𝑆𝐸 =
1

𝑁
෍

𝑖=1

𝑁

(𝑦𝑖 − ො𝑦𝑖)

 دهد ضریب تعیین نشان می. قدرت توضیح دهندگی مدل را نشان می دهد𝑅2ضریب تعیین که با : ضریب تعیین
. که چند درصد از تغییرات متغیر وابسته توسط متغیرهای مستقل توضیح داده می شود

𝑅2 = 1 −
σ𝑖=1
𝑛 ቀ𝑦𝑖𝑚𝑒𝑎𝑠 − 𝑦𝑖𝑝𝑟𝑒𝑑)

2

σ𝑖=1
𝑛 ൫𝑦𝑖𝑚𝑒𝑎𝑠 − ǉ𝑦 )2
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ژنتیکالگوریتم

درمی توانکهاست(زندهموجودات)جاندارطبیعتازگرفتهالهام سازیبهینهروشکهژنتیکالگوریتم

الگوریتمییتم،الگوراین.کردیادتصادفیومستقیمجستجویعددی،روشیکعنوانبهآناز ها، بندیطبقه

تقلیدباواستردیدهگاقتباسژنتیکعلمازشداشارهپیشترکههمانطورآناولیۀاصولواستتکراربرمبتنی

.استشدهاختراعطبیعیتکاملدرشدهمشاهدهفرآیندهایازتعدادیاز
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مراحل الگوریتم ژنتیک
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ای ژنتیکهنقاط قوت شبکه عصبی ترکیب با الگوریتم

فرآینداماهستند،تحلیلیفرمفاقدوغیرخطیتوابعتقریببرایقدرتمندابزارهایمصنوعیعصبیشبکه های❖
.استوابستهبهینه سازیروشبهبه شدتآن هاآموزش

ومحلیایکمینه هبههمگراییاولیه،مقادیربهحساسیتنظیرمحدودیت هاییبا محورگرادیانمتداولروش های❖
.بدوضعیتومعکوسمسائلدربه ویژهمواجه اند،هدفتابعمشتق پذیریبهنیاز

فضایدرپایداروسراسریجستجویامکانگرادیان،ازمستقلبهینه سازیروشیکبه عنوانژنتیکالگوریتم❖
.می کندفراهمراپارامترها

توزیعتوابعستخراجامانندپیچیدهفیزیکیمسائلبرایپایداری،افزایشوپارامتریبایاسکاهشبارویکرداین❖
.استمناسببسیارپارتونی
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پراکندگی ناکشسان ژرف و توابع توزیع پارتونی

ندگیپراکفرآیند،(پادپروتون–پروتونو)پروتون–پروتونسختبرخوردهایوژرفناکشسانپراکندگیدر

وارک هاکتوسطحمل شدهتکانهکسرتوزیعپارتونی،توزیعتوابع.می شودکنترلهادرون هاپارتونیساختارتوسط

دقیقبرازشازتوابعاین.هستندQCDمحاسباتاساسیورودیومی کنندتوصیفرانوکلئوندرونگلئون هاو

ردمقطعسطحدقیقپیش بینیبرایوآمدهبه دستHERAوSLACنظیرشتابدهنده هاییآزمایشگاهیداده های

LHCساختارتوابع.می روندبه کارF(x)قطبیدهساختارتوابعو𝑔(𝑥)اسپینوتکانهتوزیعدربارهاطلاعاتی

𝑄مقیاسیوابستگی.می کنندفراهمپارتون ها
تحولمعادلاتباQCDچارچوبدرPDFsوساختارتوابع2

DGLAPداده هایکلیبرازشوتحلیل.می شودتوصیفDISتعییندرکلیدینقشPDFsغیرقطبیدهوقطبیده

.داردقویبرهم کنش هایدینامیکفهمو
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توابع توزیع پارتونویژگی های 

جربیتداده هایازوسیعیگسترهازاستفاده❖

اولیهتوزیعتابعکاملوعمومیفرم❖

قطعیتعدمتعیین❖

گلوئونتوزیعتابعتعییندردقت❖

قویجفت شدگیثابتدقیقمحاسبه❖

اختلالیمرتبهبالاتریندرآنالیز❖
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نیپارتوتوابع توزیع گروه های پدیده شناسی
PDFگروه  نسخه شاخص/ سال  مقیاس اولیه رهیافت طعم سنگین داده های اصلی ویژگی شاخص

MSHT20

MSHT20 ( تکامل یافته
MSTW08 ،

MMHT14)

1.0 GM-VFNS
SLAC،HERA،

داده های هدف ثابت

چارچوب مرجع استاندارد، 
پارامتری سازی با 

چندجمله ای چبیشف

CT18 CT18 1.69 GM-VFNS
Tevatron, 

ZEUS/H1

دقت بالا در برخوردهای 
سخت، داده های 

ترکیب شده

NNPDF2.0 / 2.1 NNPDF2.1 1.0 ZM-VFNS
Tevatron،داده‌های‌

DIS

م الگوریت+ شبکه عصبی 
پارامتر آزاد259ژنتیک، 

NNPDF4.1 NNPDF4.1 متغیر GM-VFNS
HERA ،LHC 

Tevatron

ه یادگیری غیرخطی، محاسب
دقیق عدم قطعیت ها

JR09
JR09 

(GJR08/GRV)
2.0 FFNS منتخب DISداده های

20مدل پدیده شناسی ساده، 
پارامتر آزاد

ABKM ABKM 9.0 FFNS
DIS، داده های هدف

ثابت
پارامتری سازی دقیق، 

(𝛼𝑠)تمرکز بر

HERAPDF HERAPDF 5.0 GM-VFNS
ZEUS + H1 

(HERA)

د آنالیز کاملاً تجربی، قیو
جمعی دقیق

KKT / KKTc KKT/KKTc 2.0 —
HERA، داده های انرژی

پایین
کوچک و (x)کنترل رفتار 

بزرگ
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MINUITیبرنامهباآشنایی

MINUITمرکزدر1970سالدرجیمزفردتوسطکهپارامترهاستبهینه سازیدرپیشگامبرنامه هایازیکی
وربیتجداده هایبینتفاضلکمینه سازیبرنامه،ایناصلیهدف.شدپیاده سازیوطراحیCERNتحقیقاتی

ازبسیاریدروارددمحبوبیتمحاسباتیوتجربیعلومدر ویژهبهبرنامهاین.استتئوریمدل هایپیش بینی های
.استشدهگرفتهکاربهعلمیحوزه های

MINUITاستمدلیندهنمایتابعاین.کندتعریفراچندپارامتریتئوریتابعیککهمی دهداجازهکاربربه
برایپیشرفتهعددیروش هایازMINUITسپس.دهدبرازشآنبهراتجربیداده هایداردقصدکاربرکه

مقدارکیبرنامهاینکار،اینبرای.می کنداستفادهواقعیداده هایومدلخروجیبیناختلافکمینه سازی
.می کندکمینهاست،شدهمحاسبهتئوریمدلوداده هابینکهراخطامربعاتتفاضل
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یروش کمترین مربعات و تابع توزیع مربع کا
فیزیکدرگسترده طوربهواست سازیکمینهمسائلحلدرتکنیک هاپرکاربردترینازیکیمربعاتکمترینروش

اصلیدفهوشدهطراحیتجربیداده هایبهتئوریمدل هایبرازشبرایروشاین.می شوداستفادهمرتبطعلومو
.استمدلمجهولپارامترهایبرایمقادیربهترینیافتنآن

𝜙2 =෍

𝑖=1

𝑁
𝑦𝑖 − 𝜆 𝑥 𝜃

2

𝜎𝑖
2

ومدل هابرازشداده ها،تحلیلدراغلبکهاستآماردرمهماحتمالاتیتوزیعیک(𝜒2)کایمربعتوزیعتابع
بهاستانداردرمالنتوزیعبامستقلتصادفیمتغیرهایمربعاتمجموعازتوزیعاین.می شوداستفادهفرضیاتآزمون
:استقراراینازشودکمینهمجهولپارامترهاییافتنجهتاستقرارکهایرابطه.می آیددست

𝜒2 =෍

𝑖

𝑁𝑛𝐴1,𝑖
𝑒𝑥𝑝

− 𝐴1,𝑖
𝑡ℎ𝑒𝑜𝑟

𝑁𝑛Δ𝐴1,𝑖
𝑑𝑎𝑡𝑎

2
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MINUITومربعاتروش کمترین محدودیت های

پارامترهااولیه مقداردهیحساسیت به ❖

غیرخطیمحلی در مسائل کمینه هایوجود ❖

رینامنظم فضای پارامتناحیه هایمحدودیت در برخورد با ❖

χ²فرضیات آماری نهفته در تابع ❖

پارامترهاافزایش پیچیدگی با افزایش تعداد ❖

بزرگ مقیاسدر مسائل محاسباتیهزینه ی❖
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واولیهمقیاسیکدرمحدودپارامتریفرم هایانتخابپایه یبرعموماًهاPDFاستخراجمتداولروش های

.هستنداستوارMINUITبرنامه یومربعاتکمترینروشنظیرکلاسیککمینه سازیالگوریتم هایبه کارگیری

فرمخابانتبهوابستگینظیرچالش هاییبااماکرده اند،عملموفقتحلیل هاازبسیاریدرروش هاایناگرچه

.مواجه اندمحلیکمینه هایدرافتادنگیراحتمالوپارامترهافضایپیچیدگیاولیه،پارامتری

یادگیریننویابزارهایازبهره گیریاخیر،سال هایدرمصنوعیهوشومحاسباتیروش هایچشمگیرپیشرفتبا

راستا،ایندر.استگرفتهقرارتوجهموردبرازشکلاسیکروش هایبرایمکملیاجایگزینیکبه عنوانماشینی

به عنوانژنتیکایالگوریتم هوپیچیدهغیرخطیتوابعتقریبدربالاتواناییبه دلیلمصنوعیعصبیشبکه های

فراهمونیپارتتوزیعتوابعاستخراجومدل سازیبرایمناسبیبسترقدرتمند،سراسریبهینه سازیروش های

.می آورند
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پراکندگی ناکشسان ژرف قطبیده

نآزمووهادرون هادرونیساختاربررسیبرایبنیادیابزارهایازیکیژرفناکشسانپراکندگی

برهم کنشفهدهادرونیکباپرانرژیلپتونیکفرایند،ایندر.می رود شماربهکوانتومیکرومودینامیک

.می دهدارقرکاوشموردراگلئون هاوکوارک هایعنیآنساختاریاجزایبزرگ،تکانهانتقالباومی کند

ژرفاکشساننپراکندگیعنوانتحتفراینداینباشند،قطبیدهدوهریاهدف،،لپتوناسپینکههنگامی

.می شودشناخته(PDIS)قطبیده
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DGLAPمعادلات تحول 
:می شودتوصیفDGLAPتحولمعادلاتتوسط𝑄2مقیاسبهنسبتپارتونیتوزیعتوابعتحول

𝑑𝑞𝑖 𝑥, 𝑄
2

𝑑ln𝑄2
=
𝛼𝑠 𝑄

2

2𝜋
න
𝑥

1 𝑑𝑧

𝑧
෍

𝑗

𝑞𝑗 𝑧, 𝑄
2 𝑃𝑖𝑗

𝑥

𝑧
+ 𝑔 𝑧, 𝑄2 𝑃𝑗𝑔

𝑥

𝑧

𝑑𝑔 𝑥, 𝑄2

𝑑ln𝑄2
=
𝛼𝑠 𝑄

2

2𝜋
න
𝑥

1 𝑑𝑧

𝑧
෍

𝑗

𝑞𝑗 𝑧, 𝑄
2 𝑃𝑔𝑗

𝑥

𝑧
+ 𝑔 𝑧, 𝑄2 𝑃𝑔𝑔

𝑥

𝑧

یکتا،هایارککوتوزیع.شودمیبیانیکتاوغیریکتاهایکوارکوگلوئونتوزیعبرحسبتحولمعادلات
.هاستطعمهمههایتوزیعجمع

𝑞𝑆 𝑥, 𝑄2 =෍

𝑖=1

𝑛𝑓

𝑞𝑖 𝑥, 𝑄
2 + ത𝑞𝑖 𝑥, 𝑄

2

:بااستبرابریکتاغیرکوارکتوزیع
𝑞𝑁𝑆 = 𝑞𝑖 − ത𝑞 𝑖
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:کردتجزیه(Non-Singlet)غیریکتاو(Singlet)یکتابخشدوبهمی توانراقطبیدهساختارتابع

,NS ,Sg (x,Q ) g (x,Q ) g (x,Q )= +2 2 2
1 1 1

:می شوندنوشتهزیرشکلبهLOتقریبدریکتاغیرترکیببرای𝑄2تکاملمعادلات

( )s
NS NS NS

(Q )d
q (x,Q ) P q (x,Q )

dt


  


= 

2
2 0 2

2

:تند ازدر عبارگلوئونهای یکتا و کوارکبرای تحول توزیع  DGLAPمعادلات

𝜕

𝜕𝑡

∆Σ 𝑥 𝑄2

Δ𝑔 𝑥 𝑄2 =
𝛼𝑠 𝑡

2𝜋

Δ𝑃𝑞𝑞
𝑥

𝜉
2fΔ𝑃𝑞𝑔

𝑥

𝜉

Δ𝑃𝑔𝑞
𝑥

𝜉
Δ𝑃𝑔𝑔

𝑥

𝜉

ໆ
∆Σ

Δ𝑔
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n n n n n

x

dy x
dxx f g dxx f (y)g dxx dydz (x zy)f (y)g(z) f g

y y
− − − 

 = = − = 
 

    
1 1 1 11 1 1

0 0 0

𝑑

𝑑𝑡

∆Σ𝑁 𝑄2

Δ𝑔𝑁 𝑄2
=
𝛼𝑠 𝑡

2𝜋

Δ𝑃𝑞𝑞,𝑁 2fΔ𝑃𝑞𝑔,𝑁
Δ𝑃𝑔𝑞,𝑁 Δ𝑃𝑔𝑔, 𝑁

∆Σ𝑁 𝑄2

Δ𝑔𝑁 𝑄2

𝐹𝑁 𝑄2 = 𝑈𝑁
0 𝑄2 𝑄0

2 𝐼 + 𝑎𝑠 𝑄
2 𝑅𝑁

1 ൣ𝐼 + 𝑎𝑠 𝑄
2 𝑅𝑁

1 ሿ−1𝐹𝑁 𝑄2
0 𝑁𝐿𝑂

𝑅𝑁
1
=

1

𝛽0
𝛾𝑁

1
−
𝛽1
𝛽0
𝛾𝑁

0
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.می کندسادهراتکاملمعادلاتساختارضرب،بهکانولوشن هاتبدیلباکهشده اندحلملینتبدیلازاستفادهباDGLAPیکتامعادلات

درنظرموردتابعروش،ایندر.شودبازگردانده𝑥فضایبهساختارتابعاستلازم،ملینفضایدرساختادرتابعآوردنبه دستازپس

ملینفضایدرمتناظرتابعوxمنفیتوانشاملنماییعبارتیکموهومیقسمتآندرکهمی شودتعریفانتگرالیکطریقازxفضای

قرارمسیرازمشخصسمتیکدرملینفضایدرتابعتکینگی هایتمامیکهمی شودانتخاببه گونه ایانتگرال گیریمسیر.می شودظاهر

.شودتضمینمحاسبهدرستیوهمگراییتاگیرند

𝑥𝑔1 𝑥, 𝑄2 =
𝑒−

𝑥
1−𝑥

1 − 𝑥 2
𝐿𝑛

𝑥

1 − 𝑥
෍

𝑗=0

𝑛

𝐶𝑛 𝑗 𝑄2

𝐶𝑛 𝑗 𝑄2 = ෍

𝑘=0

∞

𝐵𝑛
𝑘 𝑐𝑙 𝑀 j = k + l + 2𝑄2

𝐵𝑛
𝑘 = ෍

𝑘=0

∞
−1 𝑘𝑛!

𝑘! 2 𝑛 − 𝑘 !
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دهنتایج برازش توابع توزیع برای تابع ساختار قطبی

𝑄0اولیهمقیاسدرشدهپارامتریفرمازآنالیزایندرما
2 = 4𝐺𝑒𝑽𝟐فضایدرپلاریزهپارتونتوزیعتوابعبرایxاستفاده

.نمودیم

𝑥𝛿𝑢𝑣 = 𝑁𝑢𝑣𝜂𝑢𝑣𝑥
𝑎𝑢𝑣 1 − 𝑥 𝑏𝑢𝑣 1 + 𝑐𝑢𝑣

𝑥𝛿𝑑𝑣 = 𝑁𝑑𝑣𝜂𝑢𝑣𝑥
𝑎𝑑𝑣 1 − 𝑥 𝑏𝑑𝑣 1 + 𝑐𝑑𝑣

𝑥𝛿 ത𝑞 = 𝑁𝑠𝜂𝑠𝑥
𝑎𝑠 1 − 𝑥 𝑏𝑠 1 + 𝑐𝑠

𝑥𝛿𝑔 = 𝑁𝑔𝜂𝑔𝑥
𝑎𝑔 1 − 𝑥 𝑏𝑔 1 + 𝑐𝑔
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داده های تجربی از گر وه های مختلف
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ANN–GAقطبیده با چارچوب  PDFsاستخراج 

𝑄0اولیهمقیاسدرقطبیدهپارتونیتوزیعتوابعاستخراجایبر
2 = 4𝐺𝑒𝑉2،یکژنتالگوریتمومصنوعیعصبیشبکهترکیبیچارچوباز

محدودکنندهحلیلیتفرمفرضبدونتوزیعتوابعانعطاف پذیربازسازیوپارامتریبایاسحذفرویکرد،ایناصلیهدف.استشدهاستفاده

.شده اندمدل سازیچندلایهپیش خورعصبیشبکهیکبااولیهمقیاسدرقطبیدهتوزیع های.است

𝑔1و𝑄2و 𝑥: ورودی های شبکه

قطبیده𝑃𝐷𝐹𝑠پارامتر مجهول تعیین کننده 16: خروجی شبکه

𝑅𝑒𝐿𝑈و𝑇𝑎𝑛ℎفعال سازیتوابعونورون25و15بامخفیلایهدو:شبکهساختار

درکروموزومیکبه عنوانبایاس–وزنمجموعههر.می شوندبهینه سازیژنتیکالگوریتمتوسطوبودهمدلآزادپارامترهایبایاس هاووزن ها

انتخاب،عملگرهایاعمالبا.است𝜒2برمبتنیهزینهتابعبرازندگی،معیار.استتصادفیفرد277شاملاولیهجمعیتوشدهگرفتهنظر

پارامترهایبهینهجموعهمبامتناظرنهایی،فردبهترین.می یابدادامههزینهتابعهمگراییتافرآیندوشدهتولیدجدیدنسل هایجهش،وترکیب

.می شودانتخابعصبیشبکه

𝜒2 =෍

𝑖

𝑔1
𝑒𝑥𝑝 𝑥, 𝑄𝑖

2 − 𝑔1
𝑡ℎ𝑒𝑜𝑟𝑦 𝑥, 𝑄𝑖

2

𝜎𝑖
2 + 𝜆𝑅 𝜃



29

نتایج بدست آمده از برازش روی داده های تجربی 
مدل و مقایسه نتایج برازش  NLOدر مرتبه 
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در مقیاسNLOدر امتداد راستاهای مختلف بردارهای ویژه برای مرتبه𝝌𝟐نمودار وابستگی 

𝑸𝟎اولیه
𝟐= 𝟒 𝑮𝒆𝑽𝟐در حالت قطبیده
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NLO

R² (Q²₀ = ۴ GeV²) 0.93۴7

NNLOو NLOدر مرتبه های 𝑹𝟐ضریب تعیین
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نتیجه گیری 
، DGLAPسینگلتمعادلات NLOهای لاگر و تکاملجمله ایدر این پژوهش با ترکیب تبدیل ملین، بسط چند❖

در نواحی  ویژه بهلاگر  های چندجمله ایاستفاده از .ارائه شدxبازسازی پایداری از توابع ساختار قطبیده در فضای  

𝑥تکین  → 𝑥و 0 → عاددی بازساازی می کناد و از  هاای نوساانمزیت مهمی دارد، زیرا رفتار تابع را بدون 1

، Minuitمانناد سازی کمینهکلاسیک  های  جای روشبه.  ناپایداری های تبدیل معکوس ملین جلوگیری می نماید

کل پاارامتری مبتنی بر شبکه عصبی و الگوریتم ژنتیک استفاده شد که بدون فار  شا محور دادهاز یک چارچوب 

تاای  ن. های قطبیده را با دقت و انعطاف پذیری بیشتری استخراج کنادPDFخطیغیرخاص، توانست ساختارهای 

Τ𝜒2حاصل، همراه با مقدار مناسب  𝑛𝑑𝑓 از ناپایاداری های عاددی تبادیل تنهاا ناه که ایان روش دهد می ، نشان

ایان .  دهادمیسنتی ارائه  ی پارامتریزهمعکوس ملین جلوگیری می کند، بلکه عملکرد بهتری نسبت به رویکردهای 

باشد و مبنایی مناسب بارای QCD های  تحلیلدر  Minuitجایگزینی قابل اتکا و دقیق برای تواند میچارچوب 

.، فراهم سازدEICمانندهایی حوزه و  تر دقیقدر داده های  ویژه بهمطالعات قطبیده ی آینده، 
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از توجه شما متشکریم
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