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Deep inelastic scattering, a brief review 

- High energy electron scattering is an ideal probe of the structure 

of a composite object . 

 - The photon is not on it`s mass shell, then q does not satisfy q2=0 

. 

-The invariant mass W of the outgoing system : 

 

 

 MN and pN are the mass and 4-momentum of the nucleus. 

(1) 

Fig. 1 
- Recall that by “deep” we mean Q2  M2 and by 

“inelastic” we mean   W2 = (p + q)2      M2. 
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    The Quark Parton Model 

 The photon “sees” the proton made up of the three quarks (called valence quarks) and an arbitrary 

number of       pairs (made up of sea quarks). The sea quarks originate from gluons, via               , 

themselves radiated from quarks.  

 

 

 

qq g qq

- The basic idea of the QPM is that in the DIS process, ep → eX, 

the virtual proton interacts with one of the quark constituents of 

the proton. 

Scales Scaling  
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The Quark Parton Model 

- the ep interaction may be written as an incoherent sum (of probabilities) of scattering from 

single free quarks : 

- Where fq(ξ) is the probability of finding the quark q in the proton carrying 

a fraction ξ of its momentum. 
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- We have noted that the proton is made of valence quarks (uud) and  sea quarks in      pairs. When probed at 

a scale Q, all quark flavors with  mq     Q  are active. 

 

The Quark Parton Model 

 

 

- Usually the flavor is used as a shortened notation for a parton distribution. So, for example: 

- We therefore have flavor sum rules : 
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- The cross-section is of the form : 

- Lμν is the tensor from the leptonic vertex known in terms of k and k′, and Wμν is the 

unknown tensor describing the hadronic vertex. 

The DIS observables: the structure functions 

(3) 

The general form for          is W

Comparison  (2) and (3) leads for instance, the      structure function as it follows:   
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The DIS observables: the structure functions 

- An experimental comparison of DIS data in the early 1970s is 

shown in Fig. 2. 

- The good agreement with the QPM relations is evident, but 

the area under the curve : 

shows that only 50% of the proton’s momentum is carried by 

quarks. It provided the first (indirect) evidence for the 

existence of the gluonic component of the proton. 
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Fig.2 



The running QCD coupling 

- First we discuss the QED coupling. 

- Vacuum polarisation effects (i.e. polarised 

e+e−-pairs) screen the bare electron charge. 

The screening is least at short photon 

wavelengths, which causes the QED 

coupling, α = e2/4π, to increase with the 

energy of the photon. 

Fig. 3 



The running QCD coupling 

Fig. 4 

- Turning now to QCD we have a new vertex to consider, the triple-gluon vertex, which arises since 

the gluons themselves carry colour charge. This changes everything. 



Further discussion, DGLAP evolution equations 

- Our O(αs) would be completed if in addition to the γq → gq subprocesse, at O(αs), we need to include the          

                processes. Then the evolution equation (known as DGLAP equation) for the quark density q ≡ fq 

becomes : 

- Where g ≡ fg is the gluon density, and Pqq ≡ P is the q → q(g) splitting function . 

(6) 
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- Clearly we must also consider the evolution of the gluon density : 

The sum is over the i quark flavors,  where           and          are   q → gq and g → gg splitting functions.  Pgq Pgg
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Global parton analysis 

- An example of the resulting parton distributions is shown in Fig. 3. 

Fig. 5 



Renormalization group equation 

- The most crucial feature of QCD, as seen in DGLAP eqtaions, is the dependence of the QCD coupling, αs ≡ g2/4π, on Q2. 

A scale enters when we use perturbation theory to calculate the observable : 

- Since we encounter (loop) Feynman diagrams which diverge logarithmically. We need to renormalise (reparameterise) the 

theory, which introduces a renormalization scale μ. As a consequence we find that the dimensionless observable R has not 

longer scales, but has logarithmic scaling violations, that is, it has the functional dependence R(log(Q2/μ2), αs(μ
2)). 
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The renormalization group summation(RGS) approach to avoid 

the scale and scheme dependence 
 

 

 

A new grouping:   

1 1, ln( / ), ,
0 0 0 0

where
n nn m m nR r a r T L L Q R T L an n n m n m

n m n m


         
   

1 ( ),
0 0

n m nA T a R A a Ln nn m n
m n

     
 

This makes a possibility to sum the contribution to    , considering the RGE. R

( )1( ( ) ( ) ( ) ) 0 ( ) ( )
10

(1)a dn nbnA a L a A a L A a A an n n nnb dan
RGE  

    
 

Where      
2

2 (2)2 3( ) (1 ...)
2 3ln

     


aa ba ca c a c a


Known as QCD   function 

1( ( (ln )) ( (ln )1 and )
1

) (2)
ln( )

dA a A an n nd

 


 






Substituting this into the expression for      ,will lead us to R
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This shows that all dependence of   on the     scale has been cancelled.  
 

This is a pleasant  result.  
 

     By doing a full resummation on the QCD perturbative series, unphysical    scale has been removed. 
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How to remove the  scheme dependence in RGS approach 

How the perturbative series of QCD observable could be rearranged to 
yield us a result which  would be scheme independent? 

The coefficients of QCD    -function,   , are scheme dependent and  could 

be used to parametrized the renormalization scheme (RS). 
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truncated orders since the upcoming results  for        coefficients are based on Eq.(3) which guarantees 
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This RS independent, provide us a freedom to choose any scheme which make the computations 
simplify.  On this base ‘t Hooft scheme in which                         is chosen and  final result would be: 
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As  we expected, the final result for R observable in RGS approach is independent of any 
 renormalization scale and scheme.  



Scale and scheme independent in Complete Renormalization 

Group improvement approach 

The requirements to establish the Complete Renormalization Group improvement (CORGI) 
approach includes:1- Self consistency condition (SCC) for perturbative series 2- Trade the 
renormalization scale,   , with  first perturbatuve coefficient,    , using SCC. 3-Extending 

the scheme parameters  which  in addition to      parameters, includes     .    
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Substituting the result for                                    in                       expansion, gives: 
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Here the sum is scale and RS independent at any order of approximation. 



Application of RGS and CORGI approaches for thermal free 

energy density in QCD 

Thermal free energy density in QCD  describes the behavior of the quark-gluon plasma (QGP) system 
 at finite temperature. It can be used to determine the equation of state  in QCD, which expresses the  
relationship between pressure, energy density, and temperature. 
 
For computational purpose the thermal free energy density can be divided ro three parts 
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Results 



                 Conclusion 

1- The important of QPM as a tool to consider DIS proses was reviewed. 

 

2- The partonic DGLAP evolution equation to achieve to nucleon structure function was considered. 

 

3- The role of running coupling constant was paid attend to make the calculations at higher order 
approximations. 

 

4- Extending the calculations to higher order approximations make the coupling constant and perturbative 
coefficients to depend on renormalization scale and scheme. 

 

5- Two different RGS and CORGI approaches have been used to avoid from unphysical dependences. 

 

6- The result of CORGI approach for thermal free energy density was drastically far from the result of  RGS 
approach and conventional pQCD which indicates the priority of CORGI approach with respect to RGS.   

 

 




