An overview on phenomenological aspects of QCD
S35 a ol ooy s i 5 (5o s
A.Mirjalili

Yazd university

16t Conference on particles physics and fields
February 2026
Esfahan university of Technology

VE L/ VY and e



Deep Inelastic scattering, a brief review

- High energy electron scattering is an ideal probe of the structure
of a composite object .

c
/ - The photon is not on it’s mass shell, then q does not satisfy q2=0
q 9 W .
-The invariant mass W of the outgoing system :
P~ Nucleon W? =P +a)°’=MZ +2p,.d+9g° (1)

M, and py are the mass and 4-momentum of the nucleus.

e-nucleon scatt.
- Recall that by “deep” we mean Q2>>M? and by
Fig. 1 “inelastic” we mean W2 =(p + q)2> M2



The Quark Parton Model

- The basic idea of the QPM is that in the DIS process, ep — eX,
. the virtual proton interacts with one of the quark constituents of
the proton.

= The photon “sees” the proton made up of the three quarks (called valence quarks) and an arbitrary
number of 44 pairs (made up of sea quarks). The sea quarks originate from gluons, via 9 —>dq
themselves radiated from quarks.

Scales Scaling
violation



The Quark Parton Model

- the ep interaction may be written as an incoherent sum (of probabilities) of scattering from
single free quarks :

do
dxdQ°®

do,,

dxdQ°®

> [dé f,(8) @

- Where f,(&) Is the probability of finding the quark g in the proton carrying
a fraction & of its momentum.



The Quark Parton Model

- We have noted that the proton is made of valence quarks (uud) and sea quarks inqq pairs. When probed at
a scale Q, all quark flavors with m,< Q are active.

- Usually the flavor is used as a shortened notation for a parton distribution. So, for example:
f,(X)=u(X)=u,(X)+u,(X) (3)
f.(X)=U(x)=ug,(X)

- We therefore have flavor sum rules :

}(U_U) dX:}Uv dx=2 }(d—cT)dx:}dde:l (4)
0o 0o 0 0



The DIS observables: the structure functions

n, P'

- The cross-section is of the form :

do B 1 27Z'y0[2 u Fy(P,P')u

dxdQ? xs Q*

(L., W™) (3)

. 2 Q4 -
where Y= 0k and s=(+k) =Xy e, p n, P

- L* is the tensor from the leptonic vertex known in terms of k and k', and W, is the
unknown tensor describing the hadronic vertex.

The general form for W, is

_ 949 2 Pulo o\ q%q” 2
WﬂV_(gﬂV+q—2)F1(X’Q )+ p.g FZ(X’Q )_Ig,uvaﬂ 2p.q FS(X’Q )

Comparison (2) and (3) leads for instance, the F, structure function as it follows:

P = x(ﬁu+1d +ls+...+£U+1d_+1§+...)
9 9 9 9 9 9



The DIS observables: the structure functions

- An experimental comparison of DIS data in the early 1970s is
shown in Fig. 2.

F, (x) inucleon

1.5 10 = @° < 20 GeV * : : L
" - The good agreement with the QPM relations is evident, but

*, t F(vN) the area under the curve :

1.0 1{1 4 = R(eN) 1 1

] [F5(eN)dx=[X xq(x) =05
\. 5 2 L
0.5} N
shows that only 50% of the proton’s momentum is carried by
p
=, < quarks. It provided the first (indirect) evidence for the
; - e .:1].?5 existence of the gluoniccomponent of the proton.
.




The running QCD coupling

- First we discuss the QED coupling.

@ @ P, - Vacuum polarisation effects (i.e. polarised
& T\ U\ photon probe e*e™-pairs) screen the bare electron charge.
@ The screening is least at short photon

wavelengths, which causes the QED
coupling, a = €%/4xn, to increase with the

e = Do

physical charge bare charge sCreening ! energy Of the photon
= a2
o fﬂl long short &
well screened less screening
1/137§
-

energy of photon



The running QCD coupling

- Turning now to QCD we have a new vertex to consider, the triple-gluon vertex, which arises since
the gluons themselves carry colour charge. This changes everything.

Cls

A \
like QED large '\

i 41
coupling “ high energy
. small coupling
gquarks q acts as if
free
colour screening colour antiscreening confined
in hadron

bo= -ng/6m  + 33/127 >
. energy of gluon
Fig. 4




Further discussion, DGLAP evolution equations

- Our O(a) would be completed if in addition to the yq — gq subprocesse, at O(a), we need to include the 74— qq
processes. Then the evolution equation (known as DGLAP equation) for the quark density q = f
becomes :

oq(x,Q?%) _
510g(Q?) 27T(P ®q+qu®g) (6)

- Where g =f is the gluon density, and P, = P is the g — q(g) splitting function.

- Clearly we must also consider the evolution of the gluon density :

o9 (X,
@?ég(gzg Zﬂ(ngq@)(q +Q)+ng®g) (7)

The sum is over the i quark flavors, where Pgyqand Pggare q—gq and g — gg splitting functions.




Global parton analysis

- An example of the resulting parton distributions is shown in Fig. 3.

Fig. 5
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Renormalization group equation

- The most crucial feature of QCD, as seen in DGLAP eqtaions, is the dependence of the QCD coupling, o = g,/4x, on Q.

A scale enters when we use perturbation theory to calculate the observable :

n=0
- Since we encounter (loop) Feynman diagrams which diverge logarithmically. We need to renormalise (reparameterise) the

theory, which introduces a renormalization scale pu. As a consequence we find that the dimensionless observable R has not
longer scales, but has logarithmic scaling violations, that is, it has the functional dependence R(log(Q%/u?), ay(u?)).

R cannot depend on the choice of renormalisation scale, so we have a renormalisation group equation (RGE) :

dR 0 o 0
2:( > T : 2 JR=0
dlog u olog u© oJlog u” O«




the scale and scheme dependence

| The renormalization group summation(RGS) approach to avoid

R= Z ! an+1’ = 2 Tnm'— where L=In(u/Q)=R= Z %T LM gn+l

n=0 m=0 n=0 m=0

A new grouping: A= fonm,nammﬂzs R= %Owa)w
m= N=

This makes a possibility to sum the contribution to R, considering the RGE.
e n—1 ' ny_ __p@Ed
RGE= néo(bnﬁh (@)L'"=+p@)Ay(@)L")=0 = A,(a) b’ da An—l(a) 1)

Where B(a)= . 02

oln p2

:—ba2(1+ca+c2a2+c3a3+...) (2) Known as QCD 3— function

(1) and (2) = Ah(a(lnﬂ))_—ndl (,g) Al

_,@(in4y)



Substituting this into the expression for R ,will lead us to

R= Z An(@)L", An(a(lnﬂ))—— (a(in %)) =R= Z nI( I‘)'“ nﬁb(a(n)) Ab(a(n

Ndin (Al) n -1
L=In(u/Q), n=In& , R=Ay(aln- )= R=A (a(In))

This shows that all dependence of Ron the « scale has been cancelled.
This is a pleasant result.

By doing a full resummation on the QCD perturbative series, unphysical x scale has been removed.



How to remove the scheme dependence in RGS approach

How the perturbative series of QCD observable could be rearranged to
yield us a result which would be scheme independent?

The coefficients of QCD A-function,C, , are scheme dependent and could
be used to parametrized the renormalization scheme (RS).

dR_| 0 ,0a 0 i+1[1_(i-2) [(I —D(i-2).2_(i-3 J 2 n+l (According to
a T18 ca+ C,|ac+..|,R= 3 Tha g
dci [8c OoC: 8a} 'B (a)= I 1(1+1) (i+1) 2 ;0 new grouping)
oT oT
ﬁ 0 - Ay 102+3T2—O
oT ~ 342 =0 oc “2 3
S (a”+1aJl+(n+1),B (@)T,aM=0 (3= oT. | oc, 1 oT
n=0 CI o " oT | 2o Thmg=0 -
aT 434_;:0 3
“2.1120 o3 2 My 1_,
802 oc 3

C4



—7 = Ta=—CA+7A, — 1
T.=7.=1, T,=1,=Const , 2= Cyt 7, T3 20212373,T

0~ O 1™ 1 6)+ C2 3C.T

__ 1.
4="3% GG 2T T Ty

(z; are constant of integration)

Substituting the results for T, in R , the final result would be definitely independent of any RS at
truncated orders since the upcoming results for T,, coefficients are based on Eq.(3) which guarantees
this feature.

This RS independent, provide us a freedom to choose any scheme which make the computations
simplify. On this base 't Hooft scheme in which ¢, =0 (i>2) is chosen and final result would be:

R:noéornanﬂ(ln%=a(ln%)+rla2(|n%)+r2a3(ln%)+... .

As we expected, the final result for R observable in RGS approach is independent of any
renormalization scale and scheme.



Scale and scheme independent in Complete Renormalization
Group improvement approach

The requirements to establish the Complete Renormalization Group improvement (CORGI)
approach includes:1- Self consistency condition (SCC) for perturbative series 2- Trade the
renormalization scale, r, , with first perturbatuve coefficient, «, using SCC. 3-Extending

the scheme parameters which in addition to Ci parameters, includes r, .

— R0 i+ ()
1 scc. R=RO+0(a) oR

— =0(ai* When some calculations are done in two different schemes at N'LO
R=R0'+0(a®) —~ O(RS)

order, the results should be differed by the ordera'+

2- t=Ln(u/sr,), SCC=r71-r=p (Q) r, and ¢ could be traded.

_ 2 _
r2(r1,c2)_r1 +cr1+X2 02,
3 —lc

_¢3,9.2 _
3 sceo r3(r1,02,c3)_r1 +5¢0 +(3X2 202)r1+x3 53

General structure =1 (5,¢,....6n) = (5:65.-..C, )+ Xn—Ccn/(0-1). X, are constants of integrations and RS invariants.



Substituting the result for r,(r;.c,). 13(13.65.65), .. iN R= 3 r,a"tl expansion, gives:

n=0
2 (r2 34 (r3 2 4.,
R(Q)= a+na +(r +cr1+X 2)a +(r +3 cr +(3X 202)r +X3 > 3)a .. (4)
where a has the dependenceas a=a(r,,c,,C ).

123"

Main idea of CORGI approach: The R(Q) observableis scale and scheme independence and hence the NLO, N2LO and ...
contributions of right hand side of Eq.(4) would also be scale and scheme independence.

5 1
NLO contribution = aO(Q) a+r1a2+(r12+cr 2)3 +(r13+20r12 2C2 177 3) 4 . (5 (at NLO contribution, X2and X4 areunknown)

The invariant subset of Eq.(5) can be computed in the favorable scheme like the "t Hooft scheme in which C,=C3

=...=0
while it is considered as well that =0 =ay=a(r=0c,=0c;=0,..,c,=0).
NZ2LO contribution — X2a03: X2a3+3X2r1a4+... (here the same assumption is used while at N2LO contribution, X2is known)

This procedure can be extended to any higher order: = R(Q)=aO+X a3+X.atr +Xpa My

2°0 370 N0

Here the sum is scale and RS independentat any order of approximation.



Application of RGS and CORGI approaches for thermal free
energy density in QCD

Thermal free energy density in QCD describes the behavior of the quark-gluon plasma (QGP) system
at finite temperature. It can be used to determine the equation of state in QCD, which expresses the
relationship between pressure, energy density, and temperature.

For computational purpose the thermal free energy density can be divided ro three parts

n+
F(T)/Fy=1+ S a4 S5 a2+t a™ina
n=0 3 n=0 n=0
RGS approach = F(T)/FO =1+Qoa+FOa2+YOa2Ina+Q1a2+F1a2+Y1a3lna+£22a3+---

Here 4,15, Y5,€,,I;and Y, are constant and RS invariants and a=a(ZKT) :

TGI _ 3 4, ,3/2 7/2 9/2 52 4 5
COTGI approach= F(T)/FO 1+€:10+X2a0+x3a0+a0 +1“2a0 +1“3aO +aolna+92aolna+£23aolna+

27T L
Here X5, X5,I',,I'5,Q, and Q, are constant and RS integrations and & =a0(%) at two order of approximation
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Results
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Conclusion

1- The important of QPM as a tool to consider DIS proses was reviewed.
2- The partonic DGLAP evolution equation to achieve to nucleon structure function was considered.

3- The role of running coupling constant was paid attend to make the calculations at higher order
approximations.

4- Extending the calculations to higher order approximations make the coupling constant and perturbative
coefficients to depend on renormalization scale and scheme.

5- Two different RGS and CORGI approaches have been used to avoid from unphysical dependences.

6- The result of CORGI approach for thermal free energy density was drastically far from the result of RGS
approach and conventional pQCD which indicates the priority of CORGI approach with respect to RGS.
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