

Quantum Machine Learning (for Physics)

Mohammad Hassanshahi University College London

30 Dec 2023

IUT physics seminar

Mohammad Hassanshahi (UCL)

Quantum Machine Learning for Physics

Outline

➤ Machine Learning (ML) + examples

➢ Quantum Machine Learning + examples

Challenges of Quantum Machine Learning

Machine Learning

Mohammad Hassanshahi (UCL)

Quantum Machine Learning for Physics

30 Dec 2023

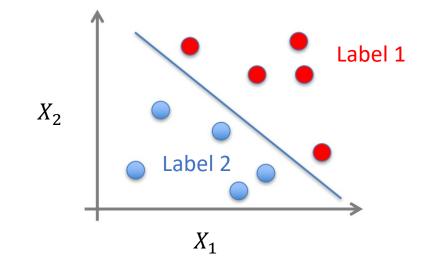
What does ML do?

➤ Task: Learn from given data to predict new data

• Learn = find a model

➢ Model found by optimizing a *loss function*

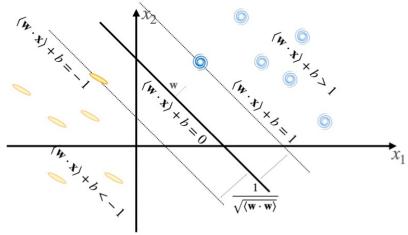
	06,60	ж	0			02	14	SPIRAL	ELLIPTICAL
	587722952230175035	13.578409	0.329970	0.773113	0.845577	1.741071	0.828695	1	0
1	587722952230175145	16.767047	0.322301	0.861787	0.834300	1.511484	0.740404	1	
2	587722962230175173	23.491833	0.338940	0.777540	0.881642	1.539079	0.740161	1	
3	587722952230240617	35.769025	0.330124	0.762121	0.810175	1.102738	0.854903	1	
4	587722952230306064	19.064729	0.357764	0.752091	0.786814	1.791984	0.856504	1	
245997	588848901536612515	19.212198	0.334808	0.709664	0.833637	1.628670	0.764711	1	
245998	588848901537005642	11,476779	0.414721	0.910051	0.779990	1.233172	0.630266		1
245999	588848901537202306	6.435532	0.458886	0.926424	1.886835	1.451324	1.663563		1
248000	588848901538578615	11.534325	0.375858	0.885514	0.823752	1.396682	0.659621	1	
248001	588848901539430566	33.886128	0.377482	0.833148	0.910880	1.427281	0.034546	1	0



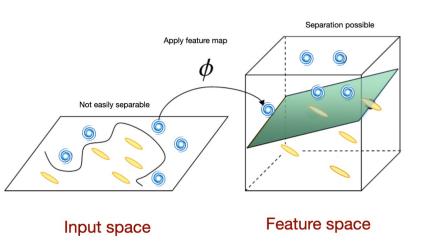
➢ Examples: classification and regression

Example: Support Vector Machine

minimize $rac{1}{n}\sum_{i=1}^n \zeta_i + \lambda \|\mathbf{w}\|^2$



subject to $y_i \left(\mathbf{w}^\mathsf{T} \mathbf{x}_i - b \right) \geq 1 - \zeta_i \, \text{ and } \, \zeta_i \geq 0, \, \text{for all } i.$,



➤ Task:

- classifying data with a hyperplane.
- penalty for misclassified data.
- \succ Optimization:
 - Primal problem:

• Dual problem:

$$egin{aligned} & ext{maximize} \ f(c_1\ldots c_n) = \sum_{i=1}^n c_i - rac{1}{2} \sum_{i=1}^n \sum_{j=1}^n y_i c_i(\underline{\mathbf{x}_i^{\intercal} \mathbf{x}_j}) y_j c_j \ & ext{subject to} \ \sum_{i=1}^n c_i y_i = 0, ext{ and } 0 \leq c_i \leq rac{1}{2n\lambda} ext{ for all } i. \end{aligned}$$

 \succ If data not linearly separable: kernel trick

$$egin{aligned} ext{maximize} & f(c_1 \ldots c_n) = \sum_{i=1}^n c_i - rac{1}{2} \sum_{i=1}^n \sum_{j=1}^n y_i c_i (arphi(\mathbf{x}_i) \cdot arphi(\mathbf{x}_j)) y_j c_j \ & = \sum_{i=1}^n c_i - rac{1}{2} \sum_{i=1}^n \sum_{j=1}^n y_i c_i \underline{k(\mathbf{x}_i,\mathbf{x}_j)} y_j c_j \end{aligned}$$

30 Dec 2023

Example: Neural Networks (NN)

 \succ In NN, output is a function of input.

- ➤ Weights to be optimised optimised
- ➢ Min of loss is found with gradient descent method
- Good scaling of derivative calculation (with backpropagation method)

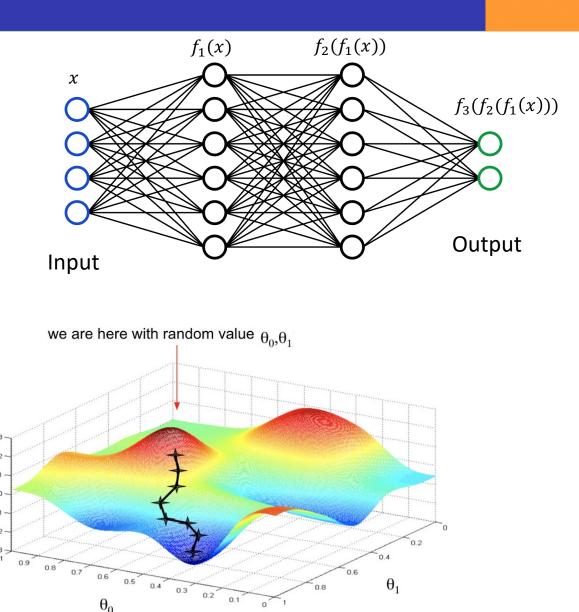


Photo: https://www.kdnuggets.com/2020/05/5-concepts-gradient-descent-cost-function.html

Examples: Autoencoders

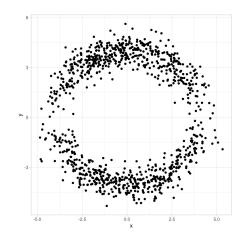
➤ Neural network with a bottle-neck in the middle

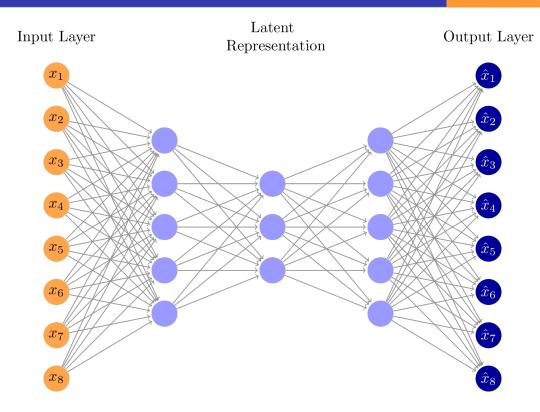
 \succ Require output to be as similar as possible to input

➢ Used for dimensionality reduction

 \geq Also used for anomaly detection

• e.g. in HEP: model-independent searches





7

UC

Quantum Machine Learning

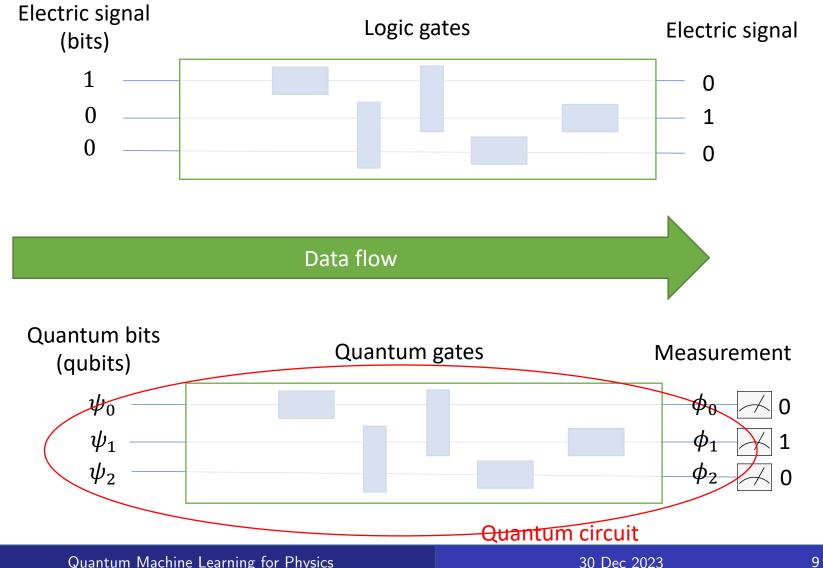
Mohammad Hassanshahi (UCL)

Quantum Machine Learning for Physics

30 Dec 2023

Quantum vs classical

Classical (=conventional) computers



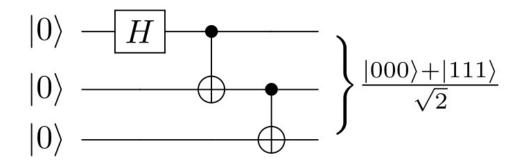
Quantum computers

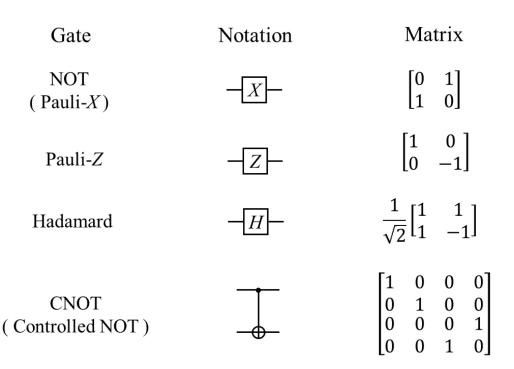
Mohammad Hassanshahi (UCL)

UC

Quantum circuit example

➤ Making Greenberger-Horne-Zeilinger (GHZ) state





Two important quantum properties

Superposition

Entanglement

Mohammad Hassanshahi (UCL)

Quantum Machine Learning for Physics

A quantum bit (qubit)

► Quantum bit:

- Instead of 0 or 1, $|\psi\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle$
- Equal to the points on a sphere

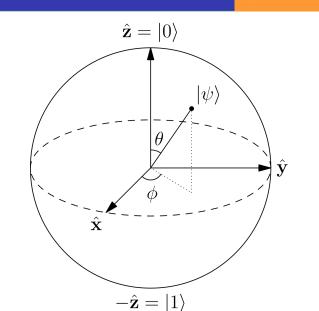
\succ Quantum gates: changing α_i

• E.g.
$$|\psi\rangle = \sqrt{\frac{1}{7}}|0\rangle + \sqrt{\frac{6}{7}}|1\rangle$$
 -----applying gate----> $|\psi\rangle = \sqrt{\frac{3}{5}}|0\rangle + \sqrt{\frac{2}{5}}|1\rangle$

As if rotating the vector in the sphere

➤ Measurement:

- We need 0 or 1 to work with
- All/Some of qubits are measured at the end



More qubits

 \succ Two qubits:

- Notation: e.g. |01) means the first qubit is 0 and second qubit is 1.
- $|\psi\rangle = \alpha_0 |00\rangle + \alpha_1 |01\rangle + \alpha_3 |10\rangle + \alpha_4 |11\rangle \rightarrow 4$ basis states

≻ Three qubits: $|\psi\rangle = \alpha_0 |000\rangle + \alpha_1 |001\rangle + \dots + \alpha_8 |111\rangle \rightarrow 8$ basis states

 $\succ N$ qubits: $|\psi\rangle = \alpha_0 |0...0\rangle + \cdots + \alpha_{2^N} |1...1\rangle \rightarrow 2^N$ basis states

 \geq Quantum gates: changing α_i

➤ Measurement

Quantum "advantage"

> Applying gates on a $|\psi\rangle = \alpha_0 |0 \dots 0\rangle + \dots + \alpha_{2^N} |1 \dots 1\rangle$:

- Classical computers: Simulating quantum circuits \rightarrow keeping track of 2^N coefficients \rightarrow Could get intractable.
- Quantum computers: Performed **naturally**.
- Quantum advantage!

> Is $\alpha_0 | 0 \dots 0 \rangle + \dots + \alpha_{2^N} | 1 \dots 1 \rangle$ always interactable in classical (conventional) computers?

- Answer: No!
- When is it intractable?

 \geq Product vs entangled state

e.g. of product: $|\psi\rangle = \frac{1}{2} (|00\rangle + |10\rangle + |01\rangle + |11\rangle) = \frac{1}{2} (|0\rangle + |1\rangle) (|0\rangle + |1\rangle)$ e.g. of entangled: $\frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)$

> Entanglement is (almost) always essential for potential quantum advantage

Example: Quantum SVM

Compute kernels in quantum computers

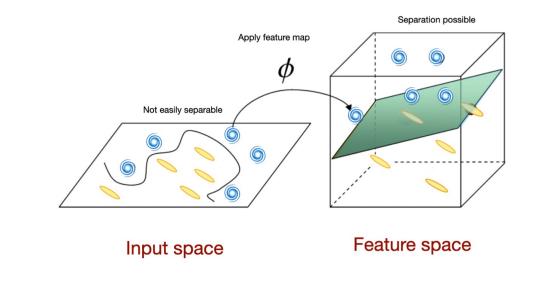
> Features are mapped into the Hilbert space of qubits

- Feature vector x is mapped to $x \to \rho(x) = |\psi(x)\rangle \langle \psi(x)|$, where $|\psi(x)\rangle = \mathcal{U}(x)|0\rangle^n$.
- Kernel is defined as $k(\mathbf{z}, \mathbf{x}) \coloneqq tr(\rho(\mathbf{z})\rho(\mathbf{x})) = |\langle \psi(\mathbf{z})|\psi(\mathbf{x})\rangle|^2 = |\langle 0|\mathcal{U}^{\dagger}(\mathbf{z})\mathcal{U}(\mathbf{x})|0\rangle|^2$.

> There are infinite possible feature maps. Interesting ones:

- are hard to simulate classically
- are computable in *near-term* devices
- provide good classification performance

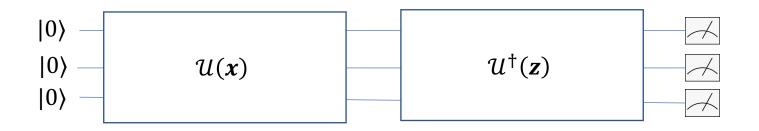
 \geq Example of U \rightarrow rotating in Bloch sphere



Example: Quantum SVM

> The kernel is then **estimated** by measuring $\mathcal{U}^{\dagger}(z)\mathcal{U}(x)|0\rangle^{n}$ for O(1000) times.

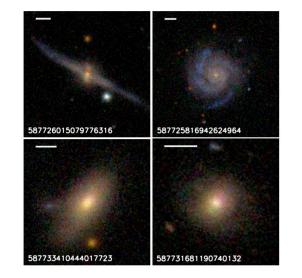
 \succ Kernel = $\frac{\# 00...00}{all meas.}$

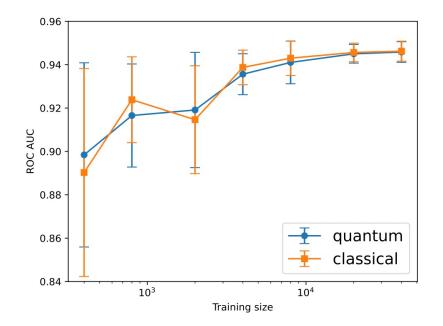


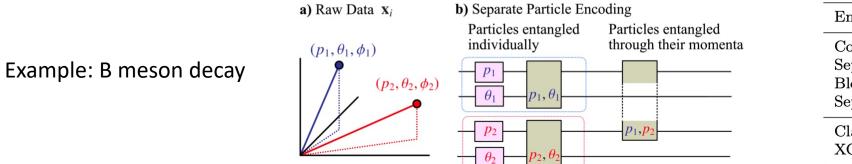
Example: Quantum SVM

Example: Galaxy classification

(Also tested a small sample on a real device)





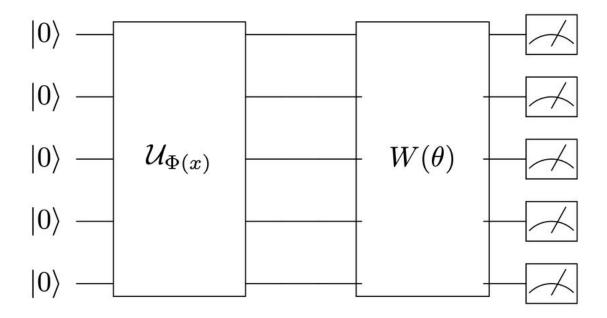


Encoding Circuit	Accuracy	AUC
Combinatorial Encoding Separate Particle Encoding Bloch Sphere Encoding Separate Particle with Bloch	$0.762 \\ 0.776 \\ 0.764 \\ 0.771$	$\begin{array}{c} 0.822 \\ 0.835 \\ 0.836 \\ 0.848 \end{array}$
Classical RBF Kernel SVM XGBoost	$0.728 \\ 0.590$	$0.793 \\ 0.621$

Quantum Neural Network

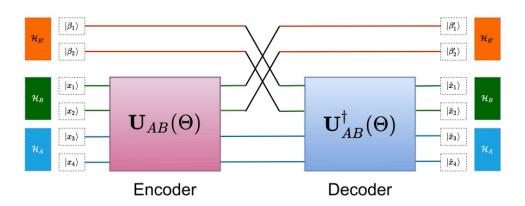
Some similarities with (conventional) neural network

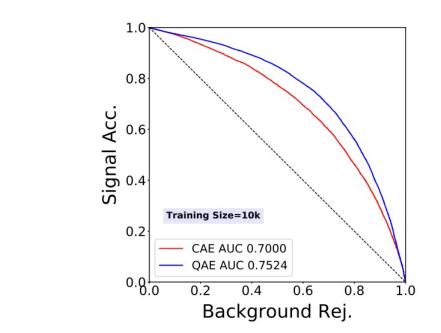
> Parameter(s) θ updated until optimum found



Quantum Autoencoder

➢ Similar to classical autoencoder





Example: Bkg: Z ->nu nu Sig: H-> two dark matter

Challenges

Mohammad Hassanshahi (UCL)

Quantum Machine Learning for Physics

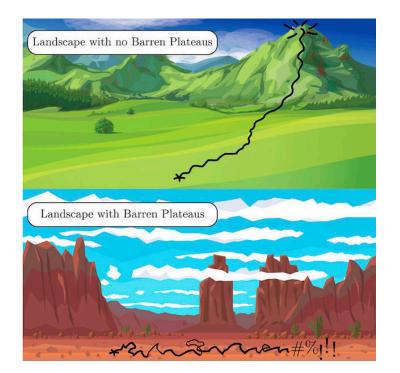
30 Dec 2023

Challenges

➢ Noise

➢ Barren plateau

- Backpropagation scaling
- Exponential concentration



Summary

➢ Quantum computing algorithms can be used for machine learning tasks

> Data are mapped to Hilbert space and the optimized model is found by minimizing a loss function

> Such tasks could in principle be intractable in classical computers

 \succ However, there are challenges ahead!

Thank you!

Mohammad Hassanshahi (UCL)

Quantum Machine Learning for Physics

30 Dec 2023

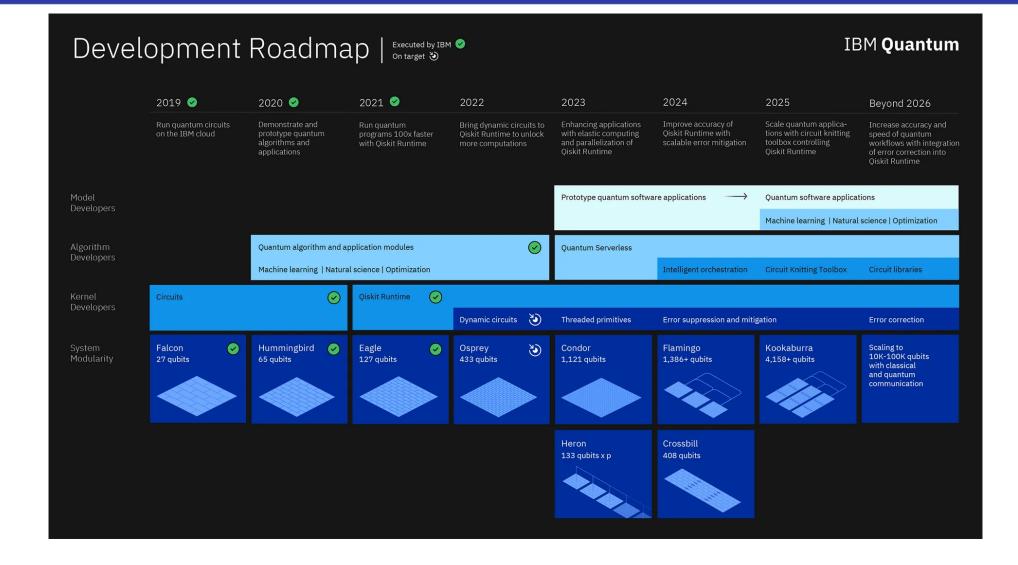
Backup

Mohammad Hassanshahi (UCL)

Quantum Machine Learning for Physics

30 Dec 2023

IBM Plan



Superconducting qubit

