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Machine Learning
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What does ML do?

» Task: Learn from given data to predict new data

= |earn = find a model

» Model found by optimizing a /oss function

» Examples: classification and regression
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Example: Support Vector Machine

» Task:
» classifying data with a hyperplane. @‘@X
» penalty for misclassified data. ,
s
» Optimization: < %
_ | minimize — Z G+ A|lwl? \ :
* Primal problem: = )
subject to y; (W X; — b) >1—¢ and (; > 0, for all 7. Ve
= Dual problem: iz Zcz - _;;ym’ X %)
subject to ; ¢yi=0,and 0 < ¢ < ﬁ for all 4. Separation possible
App.yfeat; - .

> If data not linearly separable: kernel trick

Not easily separable

maximize f(c Zcz — —ZZyzcz -o(x;5))ysc; /\’/J>/

11]

= Z ¢ — 5 Z Z yicik(x;, xJ)y] Cj Input space Feature space
i=1 j=
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Example: Neural Networks (NN)

> In NN, output is a function of input.

(x)))

» Weights to be optimised optimised

» Min of loss is found with gradient descent method

» Good scaling of derivative calculation (with
backpropagation method) we are here with random value g g,

Photo: https://www.kdnuggets.com/2020/05/5-concepts-gradient-descent-cost-function.html
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Examples: Autoencoders

- N . L
> Neural network with a bottle-neck in the middle Input Layer Reprj;(j;fation Output Layer

» Require output to be as similar as possible to input

» Used for dimensionality reduction

» Also used for anomaly detection
» e.g. in HEP: model-independent searches
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Quantum Machine Learning

Mohammad Hassanshahi (UCL) Quantum Machine Learning for Physics 30 Dec 2023



Quantum vs classical

Electric signal

. ) Logic gates Electric signal
(bits)
Classical | ) .
(=conventional) (— 1
0 -
computers °

Quantum bits

Qu antum (qubits) Quantum gates Measurement
0 \94"‘9\/74 0

CompUterS W, N
l/)z ] ¢)2 4;/\ 0

Q M circuit
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Quantum circuit example

» Making Greenberger—Horne—Zeilinger (GHZ) state

O> — H
000)+|111)
0) D 72
Gate Notation Matrix
0) b
NOT e 0 1
( Pauli-X) 1 0
1 0
Pauli-Z — 7 [0 _1]
1
Hadamard —HF —2 [1 _1 1]
—— 1 0 0 O
CNOT 01 0 O
( Controlled NOT)) —— 0 0 0 1
0 01 O
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Quantum properties .

Two important quantum properties

TN

Superposition Entanglement
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A quantum bit (qubit)

» Quantum bit:
» Instead of 0 or 1, |Y) = ay|0) + a4]|1)
» Equal to the points on a sphere

» Quantum gates: changing a;

N U TEI— sppling gate——> ) = [210)+ [

» As if rotating the vector in the sphere

» Measurement:
* We need 0 or 1 to work with
= All/Some of qubits are measured at the end
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More qubits

» Two qubits:
» Notation: e.g. |01) means the first qubit is 0 and second qubit is 1.
= |Y) = ay|00) + @;|01) + a3|10) + a,|11) - 4 basis states

» Three qubits: |Y) = a¢|000) + a1|001) + -+ ag|111) — 8 basis states
>N qubits: [) = ap|0...0) + - + a,n|1 ... 1) — 2V basis states
» Quantum gates: changing a;

> Measurement
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Quantum “advantage”

» Applying gates on a |y) = a0|0 W 0) e+ a2N|1 1)
= Classical computers: Simulating quantum circuits — keeping track of 2V coefficients —» Could get intractable.
» Quantum computers: Performed naturally.
* Quantum advantage!

> s a0|0 0+ a2N|1 ... 1) always interactable in classical (conventional) computers?

= Answer: No!
= \When is it intractable?

» Product vs entangled state
e.g. of product: [1h) = % (|00) +|10) + [01) + [11)) = = (10) + 1)) (|0} +|1))

e. g. of entangled: \/—%(IOO) +|11))

» Entanglement is (almost) always essential for potential quantum advantage

Mohammad Hassanshahi (UCL) Quantum Machine Learning for Physics 30 Dec 2023



Example: Quantum SVM

» Compute kernels in quantum computers

» Features are mapped into the Hilbert space of qubits
= Feature vector x is mapped to x = p(x) = |[Y(x)WY(x)|, where [P(x)) = U(x)[0)™.

= Kernel is defined as k(z, x) = tr(p(z)p(x)) = [(Y(@)|[Y(x))|* = |(O|UT(Z)U(x)|O)|2.

» There are infinite possible feature maps. Interesting ones:

* are hard to simulate classically
" are computable in near-term devices -

» provide good classification performance 1)

Separation possible

0 ©

» Example of U — rotating in Bloch sphere

Input space
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Example: Quantum SVM

> The kernel is then estimated by measuring U T (2)1(x)|0)" for O(1000) times.

# 00...00
all meas.

> Kernel =

0) —

10) — Ux) Uu't(2)
10) —

NN B
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Example: Quantum SVM

Example:
Galaxy classification

(Also tested a small sample
on a real device)

Example: B meson decay
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a) Raw Data Xx;

(p1,61,91)

587725816942624964

-

587733410444017723 587731681190740132

b) Separate Particle Encoding

Particles entangled Particles entangled
individually through their momenta

P1, 0

P2, H._
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| —¢— quantum

—4— classical

o %
Training size

Encoding Circuit Accuracy AUC
Combinatorial Encoding 0.762 0.822
Separate Particle Encoding 0.776 0.835
Bloch Sphere Encoding 0.764 0.836
Separate Particle with Bloch  0.771 0.848
Classical RBF Kernel SVM 0.728 0.793
XGBoost 0.590 0.621
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Quantum Neural Network

» Some similarities with (conventional) neural network

» Parameter(s) 6 updated until optimum found

0) — Us(a) W (0)

N EPNEPNEPNRPR
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Quantum Autoencoder

> Similar to classical autoencoder

t
| Us(®) U',(0)
=
Encoder Decoder
1.0
0.8
9
< 0.6
'©
C
o 0.4
Example: Bkg: Z ->nu nu n ok
. raining Size=
Sig: H-> two dark matter 0.2
—— CAE AUC 0.7000
—— QAE AUC 0.7524

0'8.0 0.2 0.4 0.6 0.8 i.O
Background Rej.
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Challenges
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Challenges

> Noise

» Barren plateau

» Backpropagation scaling

» Exponential concentration
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Summary

» Quantum computing algorithms can be used for machine learning tasks

» Data are mapped to Hilbert space and the optimized model is found by minimizing a loss function

» Such tasks could in principle be intractable in classical computers

» However, there are challenges ahead!
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Thank you!
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IBM Plan

Development Roadmap | gesy® IBM Quantum

2019 @ 2020 @ 2021 ©@ 2022 2023 2024 2025 Beyond 2026

Run quantum circuits Demonstrate and Run quantum Bring dynamic circuits to Enhancing applications Improve accuracy of Scale quantum applica- Increase accuracy and
on the IBM cloud prototype quantum programs 100x faster Qiskit Runtime to unlock with elastic computing Qiskit Runtime with tions h circuit knitting speed of quantum
algorithms and with Qiskit Runtime more computations and parallelization of scalable error mitigation toolbox controlling workflows with integration
applications Qiskit Runtime Qiskit Runtime of error correction into
Qiskit Runtime

Model Prototype quantum software applications — Quantum software applications
Developers

Machine learning | Natural science | Optimization

Algorithm Quantum algorithm and application modules Quantum Serverless
Developers

Machine learning | Natural science | Optimization

Kernel @ @

Developers

Dynamic circuits @ Threaded primitives Error suppression and mitigation Error correction

System Falcon Hummingbird @ Eagle (V) Osprey @ Condor Flamingo Kookaburra Scaling to

Modularity 27 qubits 65 qubits 127 qubits 433 qubits 1,121 qubits 1,386+ qubits 4,158+ qubits 10K-100K qubits
with classical
S, SN Sy and quantum
<S8 PN 1tum
& B & B & ' communication
<« < <

Crossbill
133 qubits x p 408 qubits
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Superconducting qubit
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